日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,等腰△ABC中,AB=AC,∠BAC=30°,AB邊上的中垂線DE分別交AB,AC于點(diǎn)D、E,∠BAC的平分線交DE于點(diǎn)F.連接BF、CF、BE.

          (1)求證:△BCF為等邊三角形;

          (2)猜想EF、EB、EC三條線段的關(guān)系,并說明理由;

          (3)如圖2,在BE的延長線上取一點(diǎn)M,連接AM,使AM=AB,連接MC并延長交AF的延長線于點(diǎn)M.求證:AN=MC.

          【答案】(1)詳見解析;(2)BE=EF+EC,理由詳見解析;(3)詳見解析.

          【解析】

          (1)先根據(jù)角平分線定義得:∠BAF=CAF=15°,根據(jù)等腰三角形性質(zhì)得:∠ABC=

          ACB=75°,計(jì)算∠FBC=60°,由中垂線的性質(zhì)得:AF=BF,證明BAF≌△CAF(SAS),

          可得BF=CF,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形,可得結(jié)論;

          (2)如圖1,作輔助線,構(gòu)建等邊三角形EFG,證明BFG≌△CFE,可得BG=EC,可得:

          BE=BG+EG=EF+EC;

          (3)如圖2,設(shè)AE=x,分別計(jì)算∠CAM=90°,NAH=60°,ANH=30°,可得

          ,可得結(jié)論.

          證明:(1)如圖1,∵∠BAC=30°AF平分∠BAC,

          ∴∠BAF=CAF=15°,

          AB=AC,

          ∴∠ABC=ACB=75°,

          DEAB的中垂線,

          AF=BF

          ∴∠BAF=ABF=15°,

          ∴∠FBC=75°15°=60°,

          BAFCAF中,

          ∴△BAF≌△CAFSAS),

          BF=CF,

          ∴△BCF是等邊三角形;

          2)猜想:BE=EF+EC

          如圖1,在BE上截取EF=FG

          DEAB的中垂線,

          AE=BE

          ∴∠BED=AED=60°,

          ∴△FGE是等邊三角形,

          ∴∠GFE=60°,EF=EG,

          ∵∠BFC=60°

          ∴∠BFG=CFE,

          BFGCFE中,

          ∴△BFG≌△CFE,

          BG=EC,

          BE=BG+EG=EF+EC;

          3)如圖2,∵∠ABE=BAE=30°,

          ∴∠AEM=60°

          AB=AM,

          ∴∠ABE=AMB=30°,

          ∴∠EAM=90°,

          設(shè)AE=x,則EM=2x,

          AB=AC=AM,

          ∴△ACM是等腰直角三角形,

          AMC=45°

          AAHMNH,

          ∴△AMH是等腰直角三角形,

          AC=AM,AHCM,

          ∴∠CAH=45°,

          ∵∠NAC=BAC=15°,

          ∴∠NAH=15°+45°=60°,

          ∴∠ANH=30°,

          AN=CM

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是正方形,E、F分別是了AB、AD上的一點(diǎn),且BF⊥CE,垂足為G,求證:AF=BE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某屆世界杯足球賽即將開幕,某媒體足球欄目從參加世界杯的球隊(duì)中選出五支傳統(tǒng)強(qiáng)隊(duì):意大利隊(duì)、德國隊(duì)、西班牙隊(duì)、巴西隊(duì)、阿根廷隊(duì),對哪支球隊(duì)最有可能獲得冠軍進(jìn)行了問卷調(diào)查,為了使調(diào)查結(jié)果有效,每位被調(diào)查者只能填寫一份問卷,在問卷中必須選擇這五支球隊(duì)中的一隊(duì)作為調(diào)查結(jié)果.從收集到的4800份有效問卷中隨機(jī)抽取部分問卷進(jìn)行統(tǒng)計(jì),繪制了統(tǒng)計(jì)圖表的一部分如下:

          根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

          1a  ,b  ;

          2)根據(jù)以上信息,請補(bǔ)全條形統(tǒng)計(jì)圖;

          3)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)在提供有效問卷的這4800人中有多少人預(yù)測德國隊(duì)最有可能獲得冠軍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料:善于思考的小軍在解方程組時(shí),采用了一種整體代換的解法,

          解:將方程②變形:4x+10y+y522x+5y+y5③,把方程①代入③得:2×3+y5,y=﹣1,把y=﹣1代入①得x4,所以,方程組的解為

          請你解決以下問題:

          1)模仿小軍的整體代換法解方程組

          2)已知x,y滿足方程組,求x2+4y2xy的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PQMN,A、B分別為直線MNPQ上兩點(diǎn),且∠BAN45°,若射線AM繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至AN后立即回轉(zhuǎn),射線BQ繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至BP后立即回轉(zhuǎn),兩射線分別繞點(diǎn)A、點(diǎn)B不停地旋轉(zhuǎn),若射線AM轉(zhuǎn)動的速度是a°/秒,射線BQ轉(zhuǎn)動的速度是b°/秒,且a、b滿足|a5|+b120.(友情提醒:鐘表指針走動的方向?yàn)轫槙r(shí)針方向)

          1a   b   ;

          2)若射線AM、射線BQ同時(shí)旋轉(zhuǎn),問至少旋轉(zhuǎn)多少秒時(shí),射線AM、射線BQ互相垂直.

          3)若射線AM繞點(diǎn)A順時(shí)針先轉(zhuǎn)動18秒,射線BQ才開始繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),在射線BQ到達(dá)BA之前,問射線AM再轉(zhuǎn)動多少秒時(shí),射線AM、射線BQ互相平行?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩車分別從相距480千米的A、B兩地相向而行,乙車出發(fā)1小時(shí)后甲車出發(fā),并以各自的速度勻速行駛,途經(jīng)C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地,乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車與A地的距離y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

          1)圖中數(shù)據(jù)420的含義正確的有   ;(填寫序號)

          ①乙車出發(fā)時(shí)與A地的距離;

          ②甲車出發(fā)時(shí)與B地的距離;

          ③甲車出發(fā)時(shí),乙車與A地的距離;

          2)乙車的速度是   千米/時(shí),a   小時(shí);甲車的速度是   千米/時(shí),t   小時(shí).

          3)在甲車到達(dá)C地之前,兩車能否相遇?若能相遇,請求出甲車行駛的時(shí)間;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)ED點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動,點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動,點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動,三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動,假設(shè)移動時(shí)間為t秒.

          1)試說明:AD∥BC;

          2)在移動過程中,小明發(fā)現(xiàn)有△DEG△BFG全等的情況出現(xiàn),請你探究這樣的情況會出現(xiàn)幾次?并分別求出此時(shí)的移動時(shí)間tG點(diǎn)的移動距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】推理填空:

          如圖,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

          ∵∠1=∠2(已知),且∠1=∠4   

          ∴∠2=∠4 (等量代換)

          CEBF    

          ∴∠   =∠3   

          又∵∠B=∠C(已知),∴∠3=∠B(等量代換)

          ABCD    

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一條筆直的公路上有兩地,甲乙兩人同時(shí)出發(fā),甲騎自行車從地到地,乙騎自行車從地到地,到達(dá)地后立即按原路返回.如圖是甲、乙兩人離地的距離與行駛時(shí)間之間的函數(shù)圖象,下列說法中①兩地相距30千米;②甲的速度為15千米/時(shí);③點(diǎn)的坐標(biāo)為(,20);④當(dāng)甲、乙兩人相距10千米時(shí),他們的行駛時(shí)間是小時(shí)或小時(shí). 正確的個(gè)數(shù)為( )

          A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

          查看答案和解析>>

          同步練習(xí)冊答案