日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點,

          (1)求該拋物線的解析式;
          (2)設(shè)(1)中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
          (3)設(shè)此拋物線與直線y=﹣x在第二象限交于點D,平行于y軸的直線 與拋物線交于點M,與直線y=﹣x交于點N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請求出m的值,若不存在,請說明理由.

          【答案】
          (1)

          解:∵拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點,

          將A、B兩點坐標(biāo)代入拋物線方程,得到:

          解得:

          所以,該拋物線的解析式為:y=﹣x2﹣3x+4


          (2)

          解:存在.

          ∵由前面的計算可以得到,C(0,4),且拋物線的對稱軸為直線x=﹣1.5,

          ∴由拋物線的對稱性,點A、B關(guān)于直線x=1對稱,

          ∴當(dāng)QC+QA最小時,△QAC的周長就最小,

          而當(dāng)點Q在直線BC上時QC+QA最小,

          此時直線BC的解析式為y=x+4,

          當(dāng)x=﹣1.5時,y=2.5,

          ∴在該拋物線的對稱軸上存在點Q(﹣1.5,2.5),使得△QAC的周長最小


          (3)

          解:由題意,M(m,﹣m2﹣3m+4),N(m,﹣m)

          ∴線段MN=﹣m2﹣3m+4﹣(﹣m)=﹣m2﹣2m+4=﹣(m+1)2+5

          ∵S四邊形BNCM=SBMN+SCMN=0.5MN×BO=2MN=﹣2(m+1)2+10

          ∴當(dāng)m=﹣1時(在 內(nèi)),四邊形BNCM的面積S最大.


          【解析】(1)A,B的坐標(biāo)代入拋物線y=﹣x2+bx+c確定解析式.(2)A,B關(guān)于對稱軸對稱,BC與對稱軸的交點就是點Q.(3)四邊形BNCM的面積等于△MNB面積+△MNC的面積.
          【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ABC=90°,以BC為直徑作⊙O,交AC于D,E為 的中點,連接CE,BE,BE交AC于F.
          (1)求證:AB=AF;
          (2)若AB=3,BC=4,求CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠l=2,DEBC,ABBC,那么∠A=3嗎?說明理由.

          解:∠A=3,理由如下:

          DEBC,ABBC(已知)

          ∴∠DEB=ABC=90° (   

          ∴∠DEB+(   )=180°

          DEAB (   

          ∴∠1=A(   

          2=3(   

          ∵∠l=2(已知)

          ∴∠A=3(   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖.電路圖上有四個開關(guān)A、B、C、D和一個小燈泡,閉合開關(guān)D或同時閉合開關(guān)A,B,C都可使小燈泡發(fā)光.
          (1)任意閉合其中一個開關(guān),則小燈泡發(fā)光的概率等于;
          (2)任意閉合其中兩個開關(guān),請用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP的度數(shù)是(

          A. 30°; B. 40° C. 50° D. 60°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1,將Rt△ABC繞點A逆時針旋轉(zhuǎn)30°后得到△AB′C′,則圖中陰影部分的面積是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】光速約為300 000千米/秒,將數(shù)字300 000用科學(xué)記數(shù)法表示為( )

          A.3×104B.3×105C.3×106D.30×104

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算:12﹣(﹣18+(﹣7)=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為了解學(xué)生對三種國慶活動方案的意見,對該校學(xué)生進行了一次抽樣調(diào)查(被調(diào)查學(xué)生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.
          請根據(jù)圖中提供的信息解答下列問題:
          (1)在這次調(diào)查中共調(diào)查了名學(xué)生;扇形統(tǒng)計圖中方案1所對應(yīng)的圓心角的度數(shù)為度;
          (2)請把條形統(tǒng)計圖補充完整;
          (3)已知該校有1000名學(xué)生,試估計該校贊成方案1的學(xué)生約有多少人?

          查看答案和解析>>

          同步練習(xí)冊答案