日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABC中,∠ABC和∠ACB的角平分線BECF相交于點(diǎn)I,

          (1)∠BIC=120°,求∠A的度數(shù)

          (2)當(dāng)∠BIC=135°,則∠A= 。

          (3)請(qǐng)你用數(shù)學(xué)表達(dá)式歸納出∠BIC與∠A的關(guān)系式,并說明理由。

          【答案】(1)60° (2)120° (3)∠BIC=90°+∠A.或∠A =2∠BIC - 180°

          【解析】試題(1)根據(jù)題目給出的數(shù)據(jù),可以知道∠A=;(2)總結(jié)上述的規(guī)律可得出∠A的值;(3)根據(jù)三角形的內(nèi)角和定理用 ∠A表示出

          ABC+ACB,再根據(jù)角平分線的定義表示出∠IEC+ICE,然后再利用三角形內(nèi)角和定理即可得出結(jié)論.

          試題解析:

          (1)由題意得,∵∠BIC是CEI的外角,

          ∴∠BIC=IEC+ICE(三角形外角定理),

          ∵∠IEC是ABE的外角,

          ∴∠IDC=A+ABD(三角形外角定理),

          BI、CI是ABC、ACB的平分線,

          ∴∠ABE=ABC,ICE=ACB(角平分線定義),

          ∴∠BIC= (ABC+ACB)+A= (A)+A=+A

          (2)由題意得,∵∠BIC是CEI的外角,

          ∴∠BIC=IEC+ICE(三角形外角定理),

          ∵∠IEC是ABE的外角,

          ∴∠IDC=A+ABD(三角形外角定理),

          BI、CI是ABC、ACB的平分線,

          ∴∠ABE=ABC,ICE=ACB(角平分線定義),

          ∴∠BIC= (ABC+ACB)+A= (A)+A=+A

          (3) 根據(jù)上述規(guī)律可得,BIC=90°+A.或A =2BIC - 180°

          理由如下:

          ∵∠BIC是△CEI的外角,

          ∴∠BIC=∠IEC+∠ICE(三角形外角定理),

          ∵∠IEC是△ABE的外角,

          ∴∠IDC=∠A+∠ABD(三角形外角定理),

          ∵BI、CI是∠ABC、∠ACB的平分線,

          ∴∠ABE= ABC,ICE=ACB(角平分線定義),

          ∴∠BIC= (ABC+ACB)+A= (A)+A=+A.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】彈簧掛上物體后會(huì)伸長測(cè)得一彈簧的長度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系,那么彈簧總長y(cm)與所掛重物x(kg)之間的關(guān)系式為( )

          A. yx+12 B. y=0.5x+12

          C. y=0.5x+10 D. yx+10.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)E重合,將三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點(diǎn)M,N.

          (1)觀察圖1,直接寫出∠AEM與∠BNE的關(guān)系是;(不用證明)
          (2)如圖1,當(dāng)M、N都分別在AB、BC上時(shí),可探究出BN與AM的關(guān)系為:;(不用證明)
          (3)如圖2,當(dāng)M、N都分別在AB、BC的延長線上時(shí),(2)中BN與AM的關(guān)系式是否仍然成立?若成立,請(qǐng)說明理由:若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知分式

          1)當(dāng)____時(shí),分式的值等于零;

          2)當(dāng)____時(shí),分式無意義;

          3)當(dāng)______時(shí)分式的值是正數(shù);

          4)當(dāng)____時(shí),分式的值是負(fù)數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線ykxb經(jīng)過點(diǎn)A(5,0),B(1,4)

          1)求直線AB的表達(dá)式;

          2)若直線y2x4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);

          3)根據(jù)圖象,寫出關(guān)于x的不等式kxb2x4>0的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】整式x2+kx+16為某完全平方式展開后的結(jié)果,則k的值為( 。

          A.4B.4C.±4D.±8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中, ,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在右側(cè),使,連接

          (1)如圖1,當(dāng)點(diǎn)在線段上,如果,則 度;

          (2)設(shè),

          ①如圖2,當(dāng)點(diǎn)在線段上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;

          ②當(dāng)點(diǎn)在直線上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)畫出圖形并直接寫出相應(yīng)的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們用[a]表示不大于a的最大整數(shù),例如[2.5]2,[3]3,[2.5]=-3<a>表示大于a的最小整數(shù),例如<2.5>3,<4>5<1.5>=-1.

          解決下列問題

          1[4.5]___,<3.5>___;

          2[x]2x的取值范圍是___;<y>=-1,則y的取值范圍是___.

          3已知x,y滿足方程組x,y的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】正數(shù)x的兩個(gè)平方根分別為3a2a+7,則44x的立方根為( 。

          A.5B.5C.13D.10

          查看答案和解析>>

          同步練習(xí)冊(cè)答案