日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙P的半徑為5,A、B是圓上任意兩點(diǎn),且AB=6,以AB為邊作正方形ABCD(點(diǎn)D、P在直線AB兩側(cè)).若AB邊繞點(diǎn)P旋轉(zhuǎn)一周,則CD邊掃過(guò)的面積為

          【答案】9π
          【解析】解:連接PA、PD,過(guò)點(diǎn)P作PE垂直AB于點(diǎn)E,延長(zhǎng)PE交CD于點(diǎn)F,如圖所示.

          ∵AB是⊙P上一弦,且PE⊥AB,
          ∴AE=BE= AB=3.
          在Rt△AEP中,AE=3,PA=5,∠AEP=90°,
          ∴PE= =4.
          ∵四邊形ABCD為正方形,
          ∴AB∥CD,AB=BC=6,
          又∵PE⊥AB,
          ∴PF⊥CD,
          ∴EF=BC=6,DF=AE=3,PF=PE+EF=4+6=10.
          在Rt△PFD中,PF=10,DF=3,∠PFE=90°,
          ∴PD=
          ∵若AB邊繞點(diǎn)P旋轉(zhuǎn)一周,則CD邊掃過(guò)的圖形為以PF為內(nèi)圓半徑、以PD為外圓半徑的圓環(huán).
          ∴S=πPD2﹣πPF2=109π﹣100π=9π.
          故答案為:9π.
          連接PA、PD,過(guò)點(diǎn)P作PE垂直AB于點(diǎn)E,延長(zhǎng)AE交CD于點(diǎn)F,根據(jù)垂徑定理可得出AE=BE= AB,利用勾股定理即可求出PE的長(zhǎng)度,再根據(jù)平行線的性質(zhì)結(jié)合正方形的性質(zhì)即可得出EF=BC=AB,DF=AE,再通過(guò)勾股定理即可求出線段PD的長(zhǎng)度,根據(jù)邊與邊的關(guān)系可找出PF的長(zhǎng)度,分析AB旋轉(zhuǎn)的過(guò)程可知CD邊掃過(guò)的區(qū)域?yàn)橐訮F為內(nèi)圓半徑、以PD為外圓半徑的圓環(huán),根據(jù)圓環(huán)的面積公式即可得出結(jié)論.本題考查了垂徑定理、勾股定理、平行線的性質(zhì)以及圓環(huán)的面積公式,解題的關(guān)鍵是分析出CD邊掃過(guò)的區(qū)域的形狀.本題屬于中檔題,難度不大,但稍顯繁瑣,解決該題型題目時(shí),結(jié)合AB邊的旋轉(zhuǎn),找出CD邊旋轉(zhuǎn)過(guò)程中掃過(guò)區(qū)域的形狀是關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖.
          第一步:如圖①,將平行四邊形紙片沿對(duì)角線BD剪開(kāi),得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(kāi)(E為BD上任意一點(diǎn)),得到△ABE和△ADE紙片;
          第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
          第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過(guò)來(lái)使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過(guò)來(lái)使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).
          則由紙片拼成的五邊形PMQRN中,對(duì)角線MN長(zhǎng)度的最小值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長(zhǎng)是16cm,那么四邊形ABFD的周長(zhǎng)是( 。

          A.16cm
          B.18cm
          C.20cm
          D.21cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知正方形ABCD的邊長(zhǎng)為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與邊BC、DC的延長(zhǎng)線交于點(diǎn)E、F,連接EF.設(shè)CE=a,CF=b.

          (1)如圖1,當(dāng)∠EAF被對(duì)角線AC平分時(shí),求a、b的值;
          (2)當(dāng)△AEF是直角三角形時(shí),求a、b的值;
          (3)如圖3,探索∠EAF繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中a、b滿足的關(guān)系式,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算:
          (1)(﹣ 2 +6cos30°;
          (2)先化簡(jiǎn),再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過(guò)最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過(guò)程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時(shí)間x成反比例關(guān)系.

          (1)求整改過(guò)程中硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;
          (2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過(guò)最高允許的1.0mg/L?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算:4sin60°﹣|﹣2|﹣ +(﹣1)2016

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,二次函數(shù)y=ax2+bx的圖象經(jīng)過(guò)點(diǎn)A(2,4)與B(6,0).

          (1)求a,b的值;
          (2)點(diǎn)C是該二次函數(shù)圖象上A,B兩點(diǎn)之間的一動(dòng)點(diǎn),橫坐標(biāo)為x(2<x<6),寫(xiě)出四邊形OACB的面積S關(guān)于點(diǎn)C的橫坐標(biāo)x的函數(shù)表達(dá)式,并求S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】平面直角坐標(biāo)中,已知點(diǎn)O(0,0),A(0,2),B(1,0),點(diǎn)P是反比例函數(shù)y=﹣ 圖象上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,垂足為Q.若以點(diǎn)O、P、Q為頂點(diǎn)的三角形與△OAB相似,則相應(yīng)的點(diǎn)P共有(
          A.1個(gè)
          B.2個(gè)
          C.3個(gè)
          D.4個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案