日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系xOy中,P是直線y2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____

          【答案】,).

          【解析】

          連接PQ、OP,如圖,根據(jù)切線的性質(zhì)得PQOQ,再利用勾股定理得到OQ=,利用垂線段最短,當OP最小時,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到結(jié)論.

          連接PQ、OP,如圖,

          ∵直線OQ切⊙P于點Q,

          PQOQ,

          RtOPQ中,OQ,

          OP最小時,OQ最小,

          OP⊥直線y2時,OP有最小值2

          OQ的最小值為

          設點Q的橫坐標為a,

          SOPQ××2×|a,

          a

          Q點的縱坐標=,

          Q點的坐標為(),

          故答案為(,).

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)如圖,AD、BC相交于點O,OAOCOBDODB.求證:ABCD

          (2)如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若OD,求∠BAC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+c分別交 x軸于A40)、B1,0),交y軸于點C0,﹣3),過點A的直線交拋物線與另一點D

          1)求拋物線的解析式及點D的坐標;

          2)若點Px軸上的一個動點,點Q在線段AC上,且Q點到x軸的距離為,連接PC、PQ,當△PCQ周長最小時,求出點P的坐標;

          3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1,使△A1P1D1≌△APD(點A1P1、D1的對應點分別是AP、D,A1P1平行于y軸,點P1在點A1上方),且△A1P1D1的兩個頂點恰好落在拋物線上?若存在,請求出點A1的橫坐標m;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+2a0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E3,2),點P是第一象限拋物線上的一個動點.

          1)求直線DE和拋物線的表達式;

          2)在y軸上取點F0,1),連接PF,PB,當四邊形OBPF的面積是7時,求點P的坐標;

          3)在(2)的條件下,當點P在拋物線對稱軸的右側(cè)時,直線DE上存在兩點M,N(點M在點N的上方),且MN2,動點Q從點P出發(fā),沿PMNA的路線運動到終點A,當點Q的運動路程最短時,請直接寫出此時點N的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,一次函數(shù)y=x+3的圖象與反比例函數(shù)y=k≠0)在第一象限的圖象交于A1a)和B兩點,與x軸交于點C

          1)求反比例函數(shù)的解析式;

          2)若點Px軸上,且△APC的面積為5,求點P的坐標;

          3)若點Py軸上,是否存在點P,使△ABP是以AB為一直角邊的直角三角形?若存在,求出所有符合條件的P點坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:ABC內(nèi)接于⊙O,過點A作直線EF

          1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):①   或②   ;

          2)如圖乙,AB是非直徑的弦,若∠CAF=B,求證:EF是⊙O的切線.

          3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OCAB

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點C,E⊙O上的一點,且∠BEC=45°.

          (1)試判斷CD⊙O的位置關(guān)系,并說明理由;

          (2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲、乙兩地高速鐵路建設成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,下列說法:

          ①甲、乙兩地相距1800千米;

          ②點B的實際意義是兩車出發(fā)后4小時相遇;

          m6,n900

          ④動車的速度是450千米/小時.

          其中不正確的是( 。

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點FDE的延長線上,∠BFE=90°,連接AF、CF,CFAB交于G.有以下結(jié)論:

          ①AE=BC

          ②AF=CF

          ③BF2=FGFC

          ④EGAE=BGAB

          其中正確的個數(shù)是( 。

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          同步練習冊答案