【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
【答案】(1)、(t+6,t);(2)、當(dāng)t=2時(shí),S有最小值是16;(3)、理由見解析.
【解析】分析:(1)、過點(diǎn)E作EG⊥x軸于點(diǎn)G,根據(jù)題意得出CO=AB=6、OA=BC=4、OP=t,然后通過角之間的關(guān)系證明△PCO和△EPG全等,從而得出答案;(2)、根據(jù)DA∥EG得出△PAD和△PGE相似,求出AD的長度,然后根據(jù)四邊形的面積等于△BDF的面積加上△BDE的面積得出函數(shù)解析式,從而求出面積的最值;(3)、根據(jù)∠FBD、∠FDB、∠BFD分別為直角,證明是否存在即可得出答案.
詳解:(1)如圖所示,過點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,
由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴
,∴AD=
t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=
t2﹣
t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,
∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,
∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=
×(
t2﹣
t+6)×6=
(t﹣2)2+16,
∴當(dāng)t=2時(shí),S有最小值是16;
(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上∵PF=OP<AB,
∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;
②假設(shè)∠FDB為直角,則點(diǎn)F在EF上,∵點(diǎn)D在矩形的對角線PE上,
∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;
③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°如圖2,作FH⊥BD于點(diǎn)H,
則FH=PA,即4﹣t=6﹣t,方程無解,
∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于( 。
A. 25:24 B. 16:15 C. 5:4 D. 4:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 的解析式為
,直線
的解析式為
,
為
上的一點(diǎn),且
點(diǎn)的坐標(biāo)為
作直線
軸,交直線于
點(diǎn)
,再作
于點(diǎn)
,交直線
于點(diǎn)
,作
軸,交直線于
點(diǎn)
,再作
于點(diǎn)
,作
軸,交直線
于點(diǎn)
....按此作法繼續(xù)作下去,則
的坐標(biāo)為_____,
的坐標(biāo)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為(長度單位),點(diǎn)
在格點(diǎn)上.
(1)直接在平面直角坐標(biāo)系中作出關(guān)于
軸對稱的圖形
(點(diǎn)
對應(yīng)點(diǎn)
,點(diǎn)
對應(yīng)點(diǎn)
);
(2)的面積為 (面積單位)(直接填空);
(3)點(diǎn)到直線
的距離為 (長度單位)(直接填空);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國邊防局接到情報(bào),近海處有一可疑船只正向公海方向行駛,邊防部迅速派出快艇
追趕(如圖1) .圖2中
分別表示兩船相對于海岸的距離
(海里)與追趕時(shí)間
(分)之間的關(guān)系.根據(jù)圖象問答問題:
(1)①直線與直線
中 表示
到海岸的距離與追趕時(shí)間之間的關(guān)系;
②與
比較 速度快;
③如果一直追下去,那么________ (填 “能”或“不能")追上
;
④可疑船只速度是 海里/分,快艇
的速度是 海里/分;
(2)與
對應(yīng)的兩個(gè)一次函數(shù)表達(dá)式
與
中
的實(shí)際意義各是什么?并直接寫出兩個(gè)具體表達(dá)式.
(3)分鐘內(nèi)
能否追上
?為什么?
(4)當(dāng)逃離海岸
海里的公海時(shí),
將無法對其進(jìn)行檢查,照此速度,
能否在
逃入公海前將其攔截?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,
,點(diǎn)
為
邊上一點(diǎn),連接BD,點(diǎn)
為
上一點(diǎn),連接
,
,過點(diǎn)
作
,垂足為
,交
于點(diǎn)
.
(1)求證:;
(2)如圖2,若,點(diǎn)
為
的中點(diǎn),求證:
;
(3)在(2)的條件下,如圖3,若,求線段
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的泥地,他們沿著前進(jìn)路線鋪了若干塊木板,構(gòu)成一條臨時(shí)近道,木板對地面的壓強(qiáng)p(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的關(guān)系式和自變量的取值范圍.
(2)當(dāng)木板面積為0.2m2時(shí),壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過6000Pa,那么木板的面積至少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,
,
的平分線
與邊
的垂直平分線
相交于點(diǎn)
,
交
的延長線于點(diǎn)
,
于點(diǎn)
,現(xiàn)有下列結(jié)論:①
;②
;③
平分
;④
,其中正確的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com