日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在建立平面直角坐標(biāo)系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標(biāo)為(﹣1,0),請按要求畫圖與作答:

          (1)把△ABC繞點P旋轉(zhuǎn)180°得△A′B′C.
          (2)把△ABC向右平移7個單位得△A″B″C″.
          (3)△A′B′C與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標(biāo).

          【答案】
          (1)解:如圖,△A'B'C'即為所求


          (2)解:如圖,A'B'C'即為所求


          (3)解:如圖,P'(2.5,0).


          【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點P旋轉(zhuǎn)180°的對應(yīng)點A′、B′、C′位置,然后順次連接即可;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A″、B″、C″的位置,然后順次連接即可;(3)利用觀察對應(yīng)點的連線即可求解.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:⊙O上兩個定點A,B和兩個動點C,D,AC與BD交于點E.

          (1)如圖1,求證:EAEC=EBED
          (2)如圖2,若 , AD是⊙O的直徑,求證:ADAC=2BDBC
          (3)如圖3,若AC⊥BD,點O到AD的距離為2,求BC的長

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點A(0,2),點C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點B.

          (1)求點B的坐標(biāo);
          (2)求拋物線的解析式;
          (3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有正方形ABCD,把△ADE順時針旋轉(zhuǎn)到△ABF的位置.其中AD=4,AE=5,則BF=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程:
          (1)x(x﹣3)+x﹣3=0
          (2)x2﹣4x+1=0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個案例,請補充完整
          原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

          (1)思路梳理
          ∵AB=AD,
          ∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
          ∵∠ADC=∠B=90°,
          ∴∠FDG=180°,點F、D、G共線.
          根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
          (2)類比引申
          如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時,仍有EF=BE+DF.
          (3)聯(lián)想拓展
          如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們可以通過類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個案例,請補充完整
          原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.

          (1)思路梳理
          ∵AB=AD,
          ∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
          ∵∠ADC=∠B=90°,
          ∴∠FDG=180°,點F、D、G共線.
          根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
          (2)類比引申
          如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時,仍有EF=BE+DF.
          (3)聯(lián)想拓展
          如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 中, 上一點, 的長是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小敏用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)加長或縮短.設(shè)單層部分的長度為xcm,雙層部分的長度為ycm,經(jīng)測量,得到如下數(shù)據(jù):

          單層部分的長度x(cm)

          4

          6

          8

          10

          150

          雙層部分的長度y(cm)

          73

          72

          71


          (1)根據(jù)表中數(shù)據(jù)的規(guī)律,完成以下表格,并直接寫出y關(guān)于x的函數(shù)解析式;
          (2)根據(jù)小敏的身高和習(xí)慣,挎帶的長度為120cm時,背起來正合適,請求出此時單層部分的長度;
          (3)設(shè)挎帶的長度為lcm,求l的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案