日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長CD、BA 交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=ACB.

          (1)求證:AH是⊙O的切線;

          (2)若OB=4,AC=6,求sinACB的值;

          (3)若,求證:CD=DH.

          【答案】(1)見解析;(2);(3)見解析.

          【解析】分析:(1)、連接OA,根據(jù)圓周角定理得出∠ADE=ADB,然后證明△DAB和△DAE全等,從而得出AB=AE,結(jié)合OB=OD得出OA∥DE,從而得出答案;(2)、根據(jù)切線的性質(zhì)得出AE=AC=AB=6,根據(jù)Rt△ABD的三角函數(shù)得出答案;(3)、根據(jù)OA是中位線得出△CDF和△AOF相似,從而得出答案.

          詳解:(1)證明:連接OA,由圓周角定理得,∠ACB=ADB,∵∠ADE=ACB,∴∠ADE=ADB,

          BD是直徑,∴∠DAB=DAE=90°,在△DAB和△DAE中,

          ∠BAD=∠EAD,DA=DA,∠BDA=∠EDA,∴△DAB≌△DAE,AB=AE,又∵OB=OD,

          OADE,又∵AHDE,OAAH,AH是⊙O的切線;

          (2)解:由(1)知,∠E=DBE,DBE=ACD,∴∠E=ACD,AE=AC=AB=6.

          RtABD中,AB=6,BD=8,ADE=ACB,sinADB=,即sinACB=;

          (3)證明:由(2)知,OA是△BDE的中位線,∴OADE,OA=DE.

          ∴△CDF∽△AOF,CD=OA=DE,即CD=CE,AC=AE,AHCE,

          CH=HE=CE,CD=CH,CD=DH.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(初步探究)

          1)如圖1,在四邊形ABCD中,∠B=∠C90°,點(diǎn)E是邊BC上一點(diǎn),ABEC,BECD,連接AE、DE.判斷△AED的形狀,并說明理由.

          (解決問題)

          2)如圖2,在長方形ABCD中,點(diǎn)P是邊CD上一點(diǎn),在邊BC、AD上分別作出點(diǎn)E、F,使得點(diǎn)F、E、P是一個等腰直角三角形的三個頂點(diǎn),且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.

          (拓展應(yīng)用)

          3)如圖3,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A2,0),點(diǎn)B4,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,則點(diǎn)C的坐標(biāo)是   

          4)如圖4,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A1,0),點(diǎn)Cy軸上的動點(diǎn),線段CA繞著點(diǎn)C按逆時針方向旋轉(zhuǎn)90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)材料,解答問題

          如圖,數(shù)軸上有點(diǎn),對應(yīng)的數(shù)分別是6,-44,-1,則兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對應(yīng)點(diǎn)之間的距離,稱之為絕對值的幾何意義

          問題應(yīng)用1

          1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對應(yīng)的的值為___________;

          2)方程的解____________;

          3)方程的解______________ ;

          問題應(yīng)用2

          如圖,若數(shù)軸上表示的點(diǎn)為.

          4的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;

          5的幾何意義是數(shù)軸上_______,的最小值是__________,此時點(diǎn)在數(shù)軸上應(yīng)位于__________上;

          6)根據(jù)以上推理方法可求的最小值是___________,此時__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠BAC90°,ADCD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長線與邊BC相交于點(diǎn)F,AGBC,交DE于點(diǎn)G,連接AF、CG.

          (1)求證:AFBF;

          (2)如果ABAC,求證:四邊形AFCG是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)α(0α90°)得到矩形AEFG.延長CBEF交于點(diǎn)H.

          (1)求證:BH=EH;

          (2)如圖2,當(dāng)點(diǎn)G落在線段BC上時,求點(diǎn)B經(jīng)過的路徑長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=ax2+bx+cx軸于A、B兩點(diǎn),交y軸于C點(diǎn),其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論①abc<0;(4a﹣b)(2a+b)<0;4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為( 。

          A. ①②③④ B. ①②④ C. ①③④ D. ①②③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某月的月歷,圖中帶陰影的方框恰好蓋住四個數(shù),不改變帶陰影的方框的形狀大小,移動方框的位置.

          (1)若帶陰影的方框蓋住的4個數(shù)中,A表示的數(shù)是x,求這4個數(shù)的和(用含x的代數(shù)式表示)

          (2)若帶陰影的方框蓋住的4個數(shù)之和為82,求出A表示的數(shù);

          (3)4個數(shù)之和可能為38112嗎?如果可能,請求出這4個數(shù),如果不可能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上.點(diǎn)B的坐標(biāo)為(8,4),將該長方形沿OB翻折,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)D,ODBC交于點(diǎn)E.

          (I)證明:EO=EB;

          (Ⅱ)點(diǎn)P是直線OB上的任意一點(diǎn),且OPC是等腰三角形,求滿足條件的點(diǎn)P的坐標(biāo);

          (Ⅲ)點(diǎn)MOB上任意一點(diǎn),點(diǎn)NOA上任意一點(diǎn),若存在這樣的點(diǎn)M、N,使得AM+MN最小,請直接寫出這個最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中國一帶一路戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2015年年收入200美元,預(yù)計2017年年收入將達(dá)到1000美元,設(shè)2015年到2017年該地區(qū)居民年人均收入平均增長率為x,可列方程為  

          A. B.

          C. D.

          查看答案和解析>>

          同步練習(xí)冊答案