日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①,在平面直角坐標(biāo)系中,AB、CD都垂直于x軸,垂足為B、D,且AD與BC相交于E點(diǎn).已知:A(-2,-6),C(1,-3)
          (1)求證:E點(diǎn)在y軸上;
          (2)如果AB的位置不變,而DC水平向右移動(dòng)K(K>0)個(gè)單位,此時(shí)AD與BC相交于E′點(diǎn),如圖②,求△AE′C的面積S關(guān)于K的函數(shù)解析式;
          (3)過A、E、E′三點(diǎn)的拋物線中,是否存在一條拋物線,它的頂點(diǎn)在x軸上?若存在,請(qǐng)求出k的值;若不存在,說明理由.
          (1)證明:根據(jù)題意得:B(-2,0),點(diǎn)D(1,0),
          設(shè)直線AD的解析式為:y=kx+b,
          -2k+b=-6
          k+b=0
          ,
          解得:
          k=2
          b=-2
          ,
          ∴直線AD的解析式為:y=2x-2,
          同理可得:直線BC的解析式為:y=-x-2,
          ∵2x-2=-x-2,
          解得:x=0,y=-2,
          ∴AD與BC的交點(diǎn)E的坐標(biāo)為(0,-2);
          ∴E點(diǎn)在y軸上;

          (2)由(1)當(dāng)DC水平向右平移k后,過AD與BC的交點(diǎn)E′作E′F⊥x軸垂足為F.
          同(1)可得:
          E′F
          AB
          +
          E′F
          DC
          =1,得:E′F=2,
          ∵BADC,
          ∴S△BCA=S△BDA,
          ∴S△AE′C=S△BDE′=
          1
          2
          BD•E′F=
          1
          2
          (3+k)×2=3+k,
          ∴S=3+k為所求函數(shù)解析式.

          (3)存在.
          設(shè)拋物線的方程y=ax2+bx+c(a≠0)過A(-2,-6),C(1,-3),E(0,-2)三點(diǎn),
          得方程組
          4a-2b+c=-6
          a+b+c=-3
          c=-2

          解得a=-1,b=0,c=-2,
          ∴拋物線方程y=-x2-2
          (注:題目未告之E(0,-2)是拋物線的頂點(diǎn))
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)A為y軸正半軸上一點(diǎn),A,B兩點(diǎn)關(guān)于x軸對(duì)稱,過點(diǎn)A任作直線交拋物線y=
          2
          3
          x2
          于P,Q兩點(diǎn).
          (1)求證:∠ABP=∠ABQ;
          (2)若點(diǎn)A的坐標(biāo)為(0,1),且∠PBQ=60°,試求所有滿足條件的直線PQ的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直角坐標(biāo)系中,OA=OC,AB=4,tan∠BCO=
          1
          5
          ,二次函數(shù)y=ax2+bx+c圖象經(jīng)過A、B、C三點(diǎn).
          (1)求A,B,C三點(diǎn)的坐標(biāo);
          (2)求二次函數(shù)的解析式;
          (3)求過點(diǎn)A、B和拋物線頂點(diǎn)D的圓的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)y=-
          1
          2
          x2+bx+c的圖象經(jīng)過點(diǎn)A(-3,-6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
          (1)求二次函數(shù)的解析式;
          (2)設(shè)點(diǎn)M為線段OC上一點(diǎn),且∠MPC=∠BAC,求點(diǎn)M的坐標(biāo);
          說明:若(2)你經(jīng)歷反復(fù)探索沒有獲得解題思路,請(qǐng)你在不改變點(diǎn)M的位置的情況下添加一個(gè)條件解答此題,此時(shí)(2)最高得分為3分.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱軸與y軸平行)經(jīng)過A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
          (1)求直線BC的解析式;
          (2)求拋物線的解析式;
          (3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直角梯形OABC中,ABOC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B的坐標(biāo)為(2,2
          3
          ),∠BCO=60°,OH⊥BC,垂足為H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
          (1)求OH的長;
          (2)若△OPQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,半徑為1的動(dòng)圓P圓心在拋物線y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          明珠大劇場座落在聊城東昌湖西岸,其上部為能夠旋轉(zhuǎn)的拱形鋼結(jié)構(gòu),并且具有開啟、閉合功能,全國獨(dú)-無二,如圖1.舞臺(tái)頂部橫剖面拱形可近似看作拋物線的一部分,其中舞臺(tái)高度1.15米,臺(tái)口高度13.5米,臺(tái)口寬度29米,如圖2.以ED所在直線為x軸,過拱頂A點(diǎn)且垂直于ED的直線為y軸,建立平面直角坐標(biāo)系.
          (1)求拱形拋物線的函數(shù)關(guān)系式;
          (2)舞臺(tái)大幕懸掛在長度為20米的橫梁MN上,其下沿恰與舞臺(tái)面接觸,求大幕的高度?(精確到0.01米)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          用長為100cm的鐵絲做一個(gè)矩形框子.
          (1)能做成矩形框的面積為800cm2嗎?如果能求出長和寬,如果不能請(qǐng)說明理由.
          (2)請(qǐng)說明能圍成的矩形最大面積是多少?為什么?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案