日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•雅安)如圖,在?ABCD中,E,F(xiàn)分別是BC,AD中點(diǎn).
          (1)求證:△ABE≌△CDF;
          (2)當(dāng)BC=2AB=4,且△ABE的面積為,求證:四邊形AECF是菱形.
          (1)證明:∵四邊形ABCD是平行四邊形,
          ∴AB=DC,AD=CB,∠B=∠D,
          ∵E,F(xiàn)分別是BC,AD中點(diǎn),
          DF=DA,BE=CB,
          ∴DF=BE,
          ∵AB=DC,∠B=∠D,
          ∴△ABE≌△CDF.
          (2)證明:過A作AH⊥BC于H,

          ∵BC=2AB=4,且△ABE的面積為,
          ∴BE=AB=2,×EB×AH=,
          ∴AH=
          ∴sinB=,
          ∴∠B=60°,
          ∴AB=BE=AE,
          ∵E,F(xiàn)分別是BC,AD中點(diǎn),
          ∴AF=CE=AE,
          ∵△ABE≌△CDF,
          ∴CF=AE,
          ∴AE=CE=CF=AF,
          ∴四邊形AECF是菱形.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (6分)如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC, DE∥AB.

          證明:(1)AE=DC;
          (2)四邊形ADCE為矩形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (11·貴港)如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點(diǎn),EF⊥AD
          于點(diǎn)F,AD=4,EF=5,則梯形ABCD的面積是
          A.40B.30C.20D.10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分10分)
          (1)如果△ABC的面積是S,E是BC的中點(diǎn),連接AE(如圖1),則△AEC的面積是           ;
          (2)在△ABC的外部作△ACD,F(xiàn)是AD的中點(diǎn),連接CF(如圖2),若四邊形ABCD的面積是S,則四邊形AECF的面積是            ;
          (3)若任意四邊形ABCD的面積是S,E、F分別是一組對邊AB、CD的中點(diǎn),連接AF,CE(如圖3),則四邊形AECF的面積是            ;

          圖1             圖2                圖3
          拓展與應(yīng)用
          (1)若八邊形ABCDEFGH的面積是100,K、M、N、O、P、Q分別是AB、BC、CD、EF、FG、GH的中點(diǎn),連接KH、MG、NF、OD、PC、QB、(如圖4),則圖中陰影部分的面積是            ;
          (2)四邊形ABCD的面積是100,E、F分別是一組對邊AB、CD上的點(diǎn),且AE=AB,
          CF=CD,連接AF,CE(如圖5),則四邊形AECF的面積是            ;
          (3)(如圖6)ABCD的面積是2,AB=a,BC=b,點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒v個(gè)單位長的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿BC以每秒個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng).E、F分別從點(diǎn)A、B同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).請問四邊形DEBF的面積的值是否隨著時(shí)間t的變化而變化?若不變,請寫出這個(gè)值         ,并寫出理由;若變化,說明是怎樣變化的.

          圖4                  圖5                     圖6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,大正方形中有2個(gè)小正方形,如果它們的面積分別是S1、S2,那么S1、S2的大小關(guān)系是
          A.S1> S2B. S1 = S2
          C. S1< S2D. S1、S2的大小關(guān)系不確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (2011•寧夏)已知,E、F是四邊形ABCD的對角線AC上的兩點(diǎn),AE=CF,BE=DF,BE∥DF.求證:四邊形A BCD是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (2011•海南)如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰落在AB邊上的點(diǎn)M處,折痕為AN,那么對于結(jié)論 ①M(fèi)N∥BC,②MN=AM,下列說法正確的是( 。

          A、①②都對          B、①②都錯(cuò)
          C、①對②錯(cuò)          D、①錯(cuò)②對

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (11·永州)(本題滿分10分)探究問題:
          ⑴方法感悟:
          如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
          AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,   ∴∠1+∠3=45°.
          即∠GAF=∠_________.
          又AG=AE,AF=AF
          ∴△GAF≌_______.
          ∴_________=EF,故DE+BF=EF.

          ⑵方法遷移:
          如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

          ⑶問題拓展:
          如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (11·柳州)如圖,在平行四邊形ABCD中,EFAD,HNAB,則圖中的平行四邊形的個(gè)數(shù)共有
          A.12個(gè)B.9個(gè)C.7個(gè)D.5個(gè)

          查看答案和解析>>

          同步練習(xí)冊答案