日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知AB是⊙O直徑,AC是⊙O弦,點(diǎn)D是
          ABC
          的中點(diǎn),弦DE⊥AB,垂足為F,DE交AC于點(diǎn)G.
          (1)若過點(diǎn)E作⊙O的切線ME,交AC的延長線于點(diǎn)M(請(qǐng)補(bǔ)完整圖形),試問:ME=MG是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;
          (2)在滿足第(2)問的條件下,已知AF=3,F(xiàn)B=
          4
          3
          ,求AG與GM的比.
          分析:(1)連接OE,并延長EO交⊙O于N,連接DN;由于ME是⊙O的切線,則∠MEG=∠N,而∠MGE=∠AGF,易證得∠AGF=∠B,即∠MGE=∠B,若證ME=MG,關(guān)鍵就是證得∠N=∠B;可從題干入手:點(diǎn)D是弧ABC的中點(diǎn),則弧AD=弧DBC=弧AE,所以弧DBE=弧AEC,即AC=DE,由此可證得∠N=∠B,即可得到∠MGE=∠MEG,根據(jù)等角對(duì)等邊即可得證.
          (2)根據(jù)相交弦定理可求得DF、EF的長,即可得到DE、AC的長,易證得△AFG∽△ACB,根據(jù)所得比例線段即可求得AG、GC的長,再由(1)證得ME=MG,可用MG分別表示出MA、MC的長,進(jìn)而根據(jù)切割線定理求出MG的長,有了AG、MG的值,那么它們的比例關(guān)系就不難求出.
          解答:精英家教網(wǎng)解:(1)ME=MG成立,理由如下:
          如圖,連接EO,并延長交⊙O于N,連接BC;
          ∵AB是⊙O的直徑,且AB⊥DE,
          AD
          =
          AE

          ∵點(diǎn)D是
          ABC
          的中點(diǎn),
          AD
          =
          DBC
          ,
          AE
          =
          DBC
          ,
          AC
          =
          DBE
          ,即AC=DE,∠N=∠B;
          ∵M(jìn)E是⊙O的切線,
          ∴∠MEG=∠N=∠B,
          又∵∠B=90°-∠GAF=∠AGF=∠MGE,
          ∴∠MEG=∠MGE,故ME=MG.

          (2)由相交弦定理得:DF2=AF•FB=3×
          4
          3
          =4,即DF=2;
          故DE=AC=2DF=4;
          ∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
          ∴△AFG∽△ACB,
          AG
          AB
          =
          AF
          AC
          ,即
          AG
          3+
          4
          3
          =
          3
          4

          解得AG=
          13
          4
          ,GC=AC-AG=
          3
          4

          設(shè)ME=MG=x,則MC=x-
          3
          4
          ,MA=x+
          13
          4

          由切割線定理得:ME2=MC•MA,即x2=(x-
          3
          4
          )(x+
          13
          4
          ),
          解得MG=x=
          39
          40
          ;
          ∴AG:MG=
          13
          4
          39
          40
          =10:3,即AG與GM的比為
          10
          3
          點(diǎn)評(píng):此題是一道圓的綜合題,涉及到:切線的性質(zhì)、圓周角定理、相交弦定理、弦切角定理、切割線定理等重要知識(shí)點(diǎn),綜合性強(qiáng),難度較大,能夠發(fā)現(xiàn)AC、DE的等量關(guān)系是解答此題的關(guān)鍵所在.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
          (1)判斷DC是否為⊙O的切線,并說明理由;
          (2)求扇形BOC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
          (1)求證:DF是⊙O的切線;
          (2)若DF=3,DE=2
          ①求
          BEAD
          值;
          ②求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
          EB
          的中點(diǎn),則下列結(jié)論不成立的是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
          求證:PA為⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長線交于點(diǎn)E.
          (1)求證:直線CD為圓O的切線.
          (2)當(dāng)AB=2BE,DE=2
          3
          時(shí),求AD的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案