日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC和△ADC都是每邊長相等的等邊三角形,點E,F(xiàn)同時分別從點B,A出發(fā),各自沿BA,AD方向運動到點A,D停止,運動的速度相同,連接EC,F(xiàn)C.
          (1)在點E,F(xiàn)運動過程中∠ECF的大小是否隨之變化?請說明理由;
          (2)在點E,F(xiàn)運動過程中,以點A,E,C,F(xiàn)為頂點的四邊形的面積變化了嗎?請說明理由;
          (3)連接EF,在圖中找出和∠ACE相等的所有角,并說明理由;
          (4)若點E,F(xiàn)在射線BA,射線AD上繼續(xù)運動下去;(1)小題中的結(jié)論還成立嗎?(精英家教網(wǎng)直接寫出結(jié)論,不必說明理由)
          分析:(1)由于BE=AF,BC=AC,且∠B、∠CAF都是60°,可證得△BCE≌△ACF,即可得∠BCE=∠ACF,因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,因此∠ECF的度數(shù)是定值,不會改變.
          (2)由(1)的全等三角形知:△ACF、△BCE的面積相等,因此四邊形AECF的面積可轉(zhuǎn)化為△ABC的面積,因此當E、F分別在線段AB、AD上運動時,四邊形AECF的面積不變.
          (3)同(1)可證得△ACE≌△DCF,得∠ACE=∠FCD;連接EF,由(1)(3)的全等三角形,易知CE=CF,且∠ECF=60°,因此△ECF是等邊三角形,那么∠EFC=60°,然后根據(jù)平角的定義以及三角形內(nèi)角和定理,證得∠AFE=∠FCD,進而可求得∠ACE相等的角是:∠ACE=∠AFE=∠FCD.
          (4)由于當E、F分別在BA、AD延長線上時,(1)的全等三角形依然成立,因此(1)的結(jié)論是成立的.
          解答:解:(1)∵E、F的速度相同,且同時運動,
          ∴BE=AF,
          又∵BC=AC,∠B=∠CAF=60°,
          在△BCE和△ACF中,
          BE=AF
          ∠B=∠CAF=60°
          BC=AC

          ∴△BCE≌△ACF(SAS),
          ∴∠BCE=∠ACF,
          因此∠ECF=∠ACF+∠ACE=∠BCE+∠ACE=60°,
          所以∠ECF=∠BCA=60°.(2分)

          (2)答:沒有變化.
          證明:由(1)知:△BCE、△ACF的面積相等;
          故:S四邊形AECF=S△AFC+S△AEC=S△AEC+S△BEC=S△ABC;(2分)
          因此四邊形AECF的面積沒有變化.精英家教網(wǎng)

          (3)答:∠AFE=∠FCD=∠ACE;
          證明:由(1)可得:∠EAC=∠FDC=60°,AE=FD,AC=CD,
          ∴△ACE≌△DCF,得∠ACE=∠FCD;
          由(1)知:EC=FC,∠ECF=60°,
          ∴△ECF是等邊三角形,即∠EFC=60°;
          ∴∠FCD+∠DFC=120°,
          又∵∠AFE+∠DFC=120°,
          ∴∠AFE=∠FCD=∠ACE.

          (4)回答(1)中結(jié)論成立.
          由于當E、F分別在BA、AD的延長線上時,(1)的全等三角形仍然成立,故(1)的結(jié)論也成立.
          點評:此題主要考查了等邊三角形的性質(zhì)以及全等三角形的判定和性質(zhì),難度適中.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連CF,
          (1)如圖1,當D點在BC上時,BE與CF的數(shù)量關系是
           
          ,位置關系是
           
          ,請證明.
          精英家教網(wǎng)
          (2)如圖2,把△DEC繞C點順時針旋轉(zhuǎn)一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結(jié)論并加以證明.
          (3)如圖3,把△DEC繞C點順時針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
          BGCG
          的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點
          A
          是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
          45
          度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.
          (1)求證:tan∠AEC=
          BCCD

          (2)請?zhí)骄緽M與DM的數(shù)量關系,并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交 CE于點G,連接BE.下列結(jié)論中:
          ①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
          一定正確的結(jié)論有( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
          (1)求證:△ACE≌△ABD;
          (2)若AC=2,EC=4,DC=2
          2
          .求∠ACD的度數(shù);
          (3)在(2)的條件下,直接寫出DE的長為
          2
          10
          2
          10
          .(只填結(jié)果,不用寫出計算過程)

          查看答案和解析>>

          同步練習冊答案