日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,∠B90°,∠BAC的平分線ADBC于點(diǎn)D,點(diǎn)EAC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D

          1)求證:①BC是⊙O的切線;②CD2CECA;

          2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE3,試求陰影部分的面積.

          【答案】1)①見解析,②見解析;(2.

          【解析】

          1)①證明DOAB,即可求解;

          ②證明CDE∽△CAD,即可求解;

          2)證明OFD、OFA是等邊三角形,S陰影=S扇形DFO,即可求解.

          1)①連接OD,

          AD是∠BAC的平分線,

          ∴∠DAB=∠DAO,

          ODOA,

          ∴∠DAO=∠ODA,

          ∴∠DAO=∠ADO

          DOAB,而∠B90°,

          ∴∠ODB90°

          BC是⊙O的切線;

          ②連接DE,

          BC是⊙O的切線,

          ∴∠CDE=∠DAC

          C=∠C,

          ∴△CDE∽△CAD,

          CD2CECA;

          2)連接DF、OF,

          設(shè)圓的半徑為r,

          ∵點(diǎn)F是劣弧AD的中點(diǎn),

          ∴是OFDA中垂線,

          DFAF,

          ∴∠FDA=∠FAD,

          DOAB,

          ∴∠PDA=∠DAF

          ∴∠ADO=∠DAO=∠FDA=∠FAD

          AFDFOAOD,

          ∴△OFD、△OFA是等邊三角形,

          ∴∠C30°,

          ODOC=(OE+EC),而OEOD,

          CEOEr3

          S陰影S扇形DFO×π×32

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為1的正方形中,對角線相交于點(diǎn),點(diǎn),點(diǎn)分別是,的中點(diǎn),于點(diǎn),連接,,得到以下四個(gè)結(jié)論:①,②,③,④,其中正確的結(jié)論是________(填寫序號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,ACBD交于點(diǎn)EABBC

          1)求∠ADB的度數(shù);

          2)過BAD的平行線,交ACF,試判斷線段EA,CF,EF之間滿足的等量關(guān)系,并說明理由;

          3)在(2)條件下過E,F分別作ABBC的垂線,垂足分別為G,H,連接GH,交BOM,若AG3,S四邊形AGMOS四邊形CHMO89,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在RtABC中,∠BAC90°ABAC,點(diǎn)DE分別在邊AB,AC上,ADAE,連接DC,BE,點(diǎn)PDC的中點(diǎn),

          1)(觀察猜想)圖1中,線段APBE的數(shù)量關(guān)系是 ,位置關(guān)系是

          2)(探究證明)把ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,(1)中的猜想是否仍然成立?若成立請證明,否請說明理由;

          3)(拓展延伸)把ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD4,AB10,請直接寫出線段AP長度的最大值和最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),與射線BC重合時(shí)就停止旋轉(zhuǎn),射線BD與線段AC相交于點(diǎn)D,點(diǎn)M是線段BD的中點(diǎn).

          1)求線段BC的長;

          2)①當(dāng)點(diǎn)D與點(diǎn)A、點(diǎn)C不重合時(shí),過點(diǎn)DDEAB于點(diǎn)E,DFBC于點(diǎn)F,連接ME,MF,在射線BD旋轉(zhuǎn)的過程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數(shù);若變化,請說明理由.

          ②在①的條件下,連接EF,直接寫出△EFM面積的最小值______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)準(zhǔn)備開展陽光體育活動,決定開設(shè)籃球、足球、乒乓球和羽毛球四種項(xiàng)目的活動,為了了解學(xué)生對這四項(xiàng)活動的喜歡情況,隨機(jī)調(diào)查了該校a名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇這四項(xiàng)活動中的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖:學(xué)生最喜歡的活動項(xiàng)目的人數(shù)條形統(tǒng)計(jì)圖學(xué)生最喜歡的活動項(xiàng)目的人數(shù)扇形統(tǒng)計(jì)圖

          根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:

          1a=_____,b=______,c=______;

          2)請根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;

          3)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該校1000名學(xué)生中有多少名學(xué)生最喜愛打籃球.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形的頂點(diǎn)軸上,反比例函數(shù))的圖像經(jīng)過頂點(diǎn),和邊的中點(diǎn).若,則的值為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BCCD上,∠EAF=45°試判斷BE、EF、FD之間的數(shù)量關(guān)系.

          【發(fā)現(xiàn)證明】小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

          【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足  關(guān)系時(shí),仍有EF=BE+FD;請證明你的結(jié)論.

          【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,ADC=120°BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,把45°的直三角板的直角頂點(diǎn)E放在邊長為6的正方形ABCD的一邊BC上,直三角板的一條直角邊經(jīng)過點(diǎn)D,以DE為一邊作矩形DEFG,且GF過點(diǎn)A,得到圖1

          1)求矩形DEFG的面積;

          2)若把正方形ABCD沿著對角線AC剪掉一半得到等腰直角三角形ABC,把45°的直三角板的一個(gè)45°角的頂點(diǎn)與等腰直角三角形ABC的直角頂點(diǎn)B重合,直三角板夾這個(gè)45°角的兩邊分別交CACA的延長線于點(diǎn)HP,得到圖2.猜想:CHPA、HP之間的數(shù)量關(guān)系,并說明理由;

          3)若把邊長為6的正方形ABCD沿著對角線AC剪掉一半得到等腰直角三角形ABC,點(diǎn)MRtABC內(nèi)一個(gè)動點(diǎn),連接MAMB、MC,設(shè)MA+MB+MCy,直接寫出 的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案