日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀下列材料,然后解決問(wèn)題:

          截長(zhǎng)法與補(bǔ)短法在證明線段的和、差、倍、分等問(wèn)題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長(zhǎng),使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來(lái)解決數(shù)學(xué)問(wèn)題.

          如圖1,在ABC中,若AB12,AC8,求BC邊上的中線AD的取值范圍.

          解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DEAD,再連接BE,把AB、AC、2AD集中在ABE中.利用三角形三邊的關(guān)系即可得4<AE<20 ,則2<AD<10.

          1)問(wèn)題解決:受到上題解法的啟發(fā),如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AEAF分別與BC、CD相交于點(diǎn)E、F,若BE=2,DF=3,求EF的長(zhǎng).可延長(zhǎng) CDE′,使得DE′BE,連接AE′,先證ABE≌△ADE′,進(jìn)一步證明 AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.

          2)問(wèn)題拓展:

          如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,MN是⊙O上的兩點(diǎn),∠MANBAD.

          ①如圖4,連接MN、MD,求證:MH=BM+DHDMAN;

          ②若點(diǎn)C(點(diǎn)C不與點(diǎn)AD、N重合)上,連接CB、CD分別交AM、AN或其延長(zhǎng)線于點(diǎn)E、F,直接寫出EF、BE、DF之間的等式關(guān)系.

          【答案】15;(2)①見解析,②EFBE+DFDFEF+BE

          【解析】

          1)根據(jù)題目給定的思路進(jìn)行求解即可;

          2)①延長(zhǎng)MD到點(diǎn)M′,使得DM′=BM,連接AM′,如圖5.仿照材料中的證明思路可證到AM=AM′,∠MAN=M′AN,然后利用等腰三角形的性質(zhì)即可解決問(wèn)題.②分兩種情況討論:.當(dāng)點(diǎn)C上時(shí),如圖1、2;.當(dāng)點(diǎn)C上時(shí),如圖3.借鑒①中的證明思路就可得到結(jié)論.

          1)延長(zhǎng) CDE′,使得DE′BE,連接AE′,

          ∵四邊形ABCD是正方形,

          AB=AB,B=ADC=90°,

          ∴∠AD E′=90°,

          DE′BE,

          ABE≌△ADE′,

          AE′=AE,∠BAE=DA E′

          ∴∠E′AE=90°,

          ∵∠EAF=45°,

          ∴∠E′AF=45°,

          ∴∠E′AF=EAF,

          AEFAE′F中,

          ,

          EF=E′F,

          E′F=DE′+DF=BE+DF=2+3=5,

          EF=5.

          2)①延長(zhǎng)MD到點(diǎn)M′,使得DM′=BM,連接AM′,如圖5

          ∵∠ADM′+ADM=180°,∠ABM+ADM=180°,

          ∴∠ABM=ADM′

          ABMADM′中,

          ∴△ABM≌△ADM′SAS).

          AM=AM′BAM=DAM′

          ∴∠MAM′=BAD

          ∵∠MAN=BAD

          ∴∠MAN=MAM′

          ∴∠MAN=M′AN

          AM=AM′,∠MAN=M′AN

          MH=M′H,AHMM′

          MH=M′H=DM′+DH=BM+DH,DMAN

          ②②.當(dāng)點(diǎn)C上時(shí),如圖1、2

          同理可得:EF=BE+DF

          .當(dāng)點(diǎn)C上時(shí),如圖3

          同理可得:DFEF+BE.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中, ,點(diǎn)分別是的中點(diǎn), 延長(zhǎng)線上的一點(diǎn),且

          (1)求證: ;

          (2)求證:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖數(shù)軸上AB、C三點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b7,滿足,,P為數(shù)軸上一動(dòng)點(diǎn),點(diǎn)PA出發(fā),沿?cái)?shù)軸正方向以每秒個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)在射線CA上向點(diǎn)A勻速運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).

          1)求ab的值

          2)當(dāng)P運(yùn)動(dòng)到線段OB的中點(diǎn)時(shí),點(diǎn)Q運(yùn)動(dòng)的位置恰好是線段AB靠近點(diǎn)B的三等分點(diǎn),求點(diǎn)Q的運(yùn)動(dòng)速度

          3)在的條件下,當(dāng)P、Q兩點(diǎn)間的距離是6個(gè)單位長(zhǎng)度時(shí),OP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l上有一點(diǎn)O,點(diǎn)A、B同時(shí)從O出發(fā),在直線l上分別向左、向右作勻速運(yùn)動(dòng),且A、B的速度比為1:2,設(shè)運(yùn)動(dòng)時(shí)間為ts.

          (1)當(dāng)t=2s時(shí),AB=12cm.此時(shí),

          ①在直線l上畫出A、B兩點(diǎn)運(yùn)動(dòng)2秒時(shí)的位置,并回答點(diǎn)A運(yùn)動(dòng)的速度是 cm/s; 點(diǎn)B運(yùn)動(dòng)的速度是 cm/s.

          ②若點(diǎn)P為直線l上一點(diǎn),且PA﹣PB=OP,求的值;

          (2)在(1)的條件下,若A、B同時(shí)按原速向左運(yùn)動(dòng),再經(jīng)過(guò)幾秒,OA=2OB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】求知中學(xué)有一塊四邊形的空地ABCD,如下圖所示,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°,AB=3mBC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問(wèn)學(xué)校需要投入多少資金買草皮?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某景區(qū)的門票銷售分兩類:一類為散客門票,價(jià)格為/張;另一類為團(tuán)體門票(一次性購(gòu)買門票張以上),每張門票價(jià)格在散客門票價(jià)格的基礎(chǔ)上打折,某班部分同學(xué)要去該景點(diǎn)旅游,設(shè)參加旅游人,購(gòu)買門票需要

          1)如果每人分別買票,求之間的函數(shù)關(guān)系式:

          2)如果購(gòu)買團(tuán)體票,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

          3)請(qǐng)根據(jù)人數(shù)變化設(shè)計(jì)一種比較省錢的購(gòu)票方式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校教學(xué)樓(甲樓)的頂部E和大門A之間掛了一些彩旗.小穎測(cè)得大門A距甲樓的距離AB31cm,在A處測(cè)得甲樓頂部E處的仰角是31°.

          (1)求甲樓的高度及彩旗的長(zhǎng)度;(精確到0.01m

          (2)若小穎在甲樓樓底C處測(cè)得學(xué)校后面醫(yī)院樓(乙樓)樓頂G處的仰角為40°,爬到甲樓樓頂F處測(cè)得乙樓樓頂G處的仰角為19°,求乙樓的高度及甲乙兩樓之間的距離.(精確到0.01m

          (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在等腰直角三角形ABC中,DAB的中點(diǎn),E,F分別是AC,BC.上的點(diǎn)(點(diǎn)E不與端點(diǎn)A,C重合),且連接EF并取EF的中點(diǎn)O,連接DO并延長(zhǎng)至點(diǎn)G,使,連接DE,DFGE,GF

          (1)求證:四邊形EDFG是正方形;

          (2)直接寫出當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最小?最小值是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案