【題目】如圖,在中,
,點(diǎn)
是
邊上的動(dòng)點(diǎn)(不與
重合),點(diǎn)
在
邊上,并且滿足
.
(1)求證:;
(2)若的長(zhǎng)為
,請(qǐng)用含
的代數(shù)式表示
的長(zhǎng);
(3)當(dāng)(2)中的最短時(shí),求
的面積.
【答案】(1)見解析;(2);(3)
【解析】
(1)由等腰三角形的性質(zhì)可得,然后根據(jù)三角形的外角性質(zhì)可得
,進(jìn)而可證得結(jié)論;
(2)根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得CE與x的關(guān)系,進(jìn)一步即可得出結(jié)果;
(3)根據(jù)(2)題的結(jié)果,利用二次函數(shù)的性質(zhì)可得AE最短時(shí)x的值,即BD的長(zhǎng),進(jìn)而可得AD的長(zhǎng)和△ADC的面積,進(jìn)一步利用所求三角形的面積與△ADC的面積之比等于AE與AC之比即得答案.
解:(1)∵,∴
,∵
,∴
,
∵,∴
,
∴;
(2)∵,∴
,∴
,
∴,
∴;
(3)∵,∴
時(shí),
的值最小為6.4,此時(shí)
,
∵,∴
,∴
,
∴,
∵,即
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC~△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,點(diǎn)D在線段BC上運(yùn)動(dòng),
(1)如圖1,求證:△ABD∽△ACE
(2)如圖2,當(dāng)AD⊥BC時(shí),判斷四邊形ADCE的形狀,并證明.
(3)當(dāng)點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),設(shè)P為線段DE的中點(diǎn),在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,求CP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與
軸交于點(diǎn)
,與
軸交于點(diǎn)
,且與反比例函數(shù)
在第一象限的圖象交于點(diǎn)
,
軸于點(diǎn)
,
.
(1)求點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)在
軸上,
軸交反比例函數(shù)
的圖象于點(diǎn)
.若
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在矩形中,
,
.
是對(duì)角線
上的一個(gè)動(dòng)點(diǎn)(點(diǎn)
不與點(diǎn)
,
重合),過(guò)點(diǎn)
作
,交射線
于點(diǎn)
.聯(lián)結(jié)
,畫
,
交
于點(diǎn)
.設(shè)
,
.
(1)當(dāng)點(diǎn),
,
在一條直線上時(shí),求
的面積;
(2)如圖1所示,當(dāng)點(diǎn)在邊
上時(shí),求
關(guān)于
的函數(shù)解析式,并寫出函數(shù)定義域;
(3)聯(lián)結(jié),若
,請(qǐng)直接寫出
的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求解方程:
①y(y﹣2)=3 y2﹣1(公式法)
②x2+8x+9=0(配方法)
③(2x﹣1)2﹣3(2x﹣1)+2=0(因式分解法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫弧交邊AB于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G.
(1)求證:△EFG∽△AEG;
(2)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請(qǐng)直接寫出FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為直線BD,CE的交點(diǎn).
(1)如圖,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)D在線段CE上時(shí),連接BE,下列給出兩個(gè)結(jié)論:①BD=CD+AD;②BE2=2(AD2+AB2).其中正確的是 ,并給出證明.
(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交
軸于
兩點(diǎn),交
軸于
點(diǎn),點(diǎn)
的坐標(biāo)為
,直線
經(jīng)過(guò)點(diǎn)
.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)是直線
上方拋物線上的一動(dòng)點(diǎn),求
面積
的最大值并求出此時(shí)點(diǎn)
的坐標(biāo);
(3)過(guò)點(diǎn)的直線交直線
于點(diǎn)
,連接
當(dāng)直線
與直線
的一個(gè)夾角等于
的2倍時(shí),請(qǐng)直接寫出點(diǎn)
的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com