日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線yax2+x+c經(jīng)過A40),B10)兩點,與y軸交于點C

          1)求該拋物線的解析式;

          2)在直線AC上方的拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.

          【答案】1;(2)存在,當D2,1),△DAC面積的最大值為4

          【解析】

          1)由拋物線經(jīng)過A4,0),B10),C0,-2)三點,利用待定系數(shù)法即可求得該拋物線的解析式;

          2)設D點的橫坐標為t0t4),則D點的縱坐標為-t2+t-2,過Dy軸的平行線交ACE.即可求得DE的長,繼而可求得SDCA=-t-22+4,然后由二次函數(shù)的性質(zhì),即可求得點D的坐標及△DCA面積的最大值.

          解:(1)將點A4,0)、B1,0)代入拋物線解析式得:

          ,

          解得:,

          則拋物線解析式為;

          存在.

          如圖1,設D點的橫坐標為t0t4),則D點的縱坐標為﹣t2+t2

          Dy軸的平行線交ACE

          設直線AC的解析式為:ymx+n,

          解得:,

          由題意可求得直線AC的解析式為yx2

          E點的坐標為(tt2).

          DE=﹣t2+t2﹣(t2)=﹣t2+2t

          SDCASCDE+SADE×DE×OA×(﹣t2+2t×4=﹣t2+4t=﹣(t22+4

          ∴當t2時,S最大4

          ∴當D2,1),△DAC面積的最大值為4

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】取一張矩形紙片進行折疊,具體操作過程如下:第一步:先把矩形ABCD對折,折痕為MN,如圖1;第二步:再把B點疊在折痕線MN上,折痕為AE,點BMN上的對應點為B',得RtAB'E,如圖2;第三步:沿EB'線折疊得折痕EF,使A點落在EC的延長線上,如圖3.  

          利用展開圖4探究:

          (1)△AEF是什么三角形?證明你的結(jié)論;

          (2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為了開展讀書月活動,對學生最喜歡的圖書種類進行了一次抽樣調(diào)查,所有圖書分成四類:藝術、文學、科普、其他.隨機調(diào)查了該校m名學生(每名學生必選且只能選擇一類圖書),并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖:

          根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

          1m   n   ,并請根據(jù)以上信息補全條形統(tǒng)計圖;

          2)扇形統(tǒng)計圖中,“藝術”所對應的扇形的圓心角度數(shù)是   度;

          3)根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校900名學生中有多少學生最喜歡科普類圖書.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】去年5月份,我市某中學開展爭做“五好小公民”征文比賽活動,賽后隨機抽取了部分參賽學生的成績,按得分劃分為,,四個等級,并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

          等級

          成績(

          頻數(shù)(人數(shù))

          6

          24

          9

          根據(jù)以上信息,解答以下問題:

          1)表中的 ;

          2)扇形統(tǒng)計圖中 ,等級對應的扇形的圓心角為 度;

          3)該校準備從上述獲得等級6名學生中選取兩人做為學!拔搴眯」瘛敝驹刚,已知這6人中有3名男生(用,,表示)和3名女生(用,表示),請用列表或畫樹狀圖的方法求恰好選取的是的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】陜西省相關文件規(guī)定,西安市實行居民階梯水價制度,對居民用水的基本水價實行三級價差,各階梯水價均為用戶終端水價,具體如下:

          第一階梯:年用水量及以下,終端水價為/

          第二階梯:年用水量(含),終端水價為/

          第三階梯:年用水量以上,終端水價為/

          城區(qū)居民階梯水價計量結(jié)算周期以年為單位,年用水量累計達到各階梯水量上限后,超出部分執(zhí)行下一階梯水價;年度周期之間水量不結(jié)轉(zhuǎn),不累計.

          設某戶居民2019年的年用水量為,應繳水費為(元).

          1)寫出該戶居民2019年的年用水量為含)的之間的函數(shù)表達式.

          2)若該戶居民2019年的應繳水費為元,則該戶居民2019年的年用水量為多少.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,圓柱形玻璃杯高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜(

          A.24B.25C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78(即最高點OAB的距離為78),跨徑為90(AB=90),以最高點O為坐標原點,以平行于AB的直線為軸建立平面直角坐標系,則此拋物線鋼拱的函數(shù)表達式為( )

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形ABCD的對角線ACBD相交于點O,ABBC21,且BEACCEDB,連接DE,則tanEDC=(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點O是菱形ABCD對角線的交點,過點CCEOD,過點DDEAC,CEDE相交于點E

          1)求證:四邊形OCED是矩形.

          2)若AB4,∠ABC60°,求矩形OCED的面積.

          查看答案和解析>>

          同步練習冊答案