日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知直角△ABC中,∠C=90°BC=3,AC=4,那么它的內(nèi)切圓半徑為_______.

          【答案】1

          【解析】

          分別與BC、ACAB切于點(diǎn)D、EF,連接ODOE、OF,由切線的性質(zhì)可得:∠ODC=OEC=90°,設(shè)OD=OE=r根據(jù)正方形的判定即可證出四邊形OECD是正方形,從而得出:EC=CD=OD=OE=r,再根據(jù)切線長(zhǎng)定理可得:BF=BD =3rAF=AE =4r,再根據(jù)勾股定理求出AB,利用AB的長(zhǎng)列方程即可.

          解:如圖所示,分別與BC、AC、AB切于點(diǎn)D、EF,連接OD、OEOF

          ∴∠ODC=OEC=90°

          ∵∠C=90°,設(shè)OD=OE=r

          ∴四邊形OECD是正方形

          EC=CD=OD=OE=r

          根據(jù)切線長(zhǎng)定理可得:BF=BD=BCCD=3r,AF=AE=ACEC=4r

          由勾股定理可知:AB=

          AFBF=AB

          ∴(4r)+(3r=5

          解得:r=1

          故答案為:1

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)PQ運(yùn)動(dòng)的時(shí)間為t秒.

          (1)A、B兩點(diǎn)的坐標(biāo)。

          (2)求當(dāng)t為何值時(shí),△APQ△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).

          (3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、PQ、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,DBC上,且CD=3cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)PQ分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P1cm/s的速度,沿AC向終點(diǎn)C移動(dòng);點(diǎn)Qcm/s的速度沿BC向終點(diǎn)C移動(dòng).過點(diǎn)PPEBCAD于點(diǎn)E,連接EQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為x秒.

          1)周含x的代表數(shù)式表示AE、DE的長(zhǎng)度;

          2)當(dāng)點(diǎn)QBD(不包括點(diǎn)B、D)上移動(dòng)時(shí),設(shè)△EDQ的面積為y(cm),求yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

          3)當(dāng)x為何值時(shí),△EDQ為直角三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,,點(diǎn)是線段上任意一點(diǎn),過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn),過點(diǎn)于點(diǎn).設(shè)線段的長(zhǎng)為

          1)用含的代數(shù)式表示線段的長(zhǎng).

          2)當(dāng)四邊形為菱形時(shí),求的值.

          3)設(shè)與矩形重疊部分圖形的面積為,求之間的函數(shù)關(guān)系式.

          4)連結(jié)、,當(dāng)垂直或平行時(shí),直接寫出的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2017年的淘寶雙十一,開場(chǎng)11秒后,銷售額突破十億,3分鐘破百億,最終成交額定格在1682億元上,在今年的雙十一前夕,某企業(yè)生產(chǎn)一種必需商品作為雙十一的主打商品,經(jīng)過之前的長(zhǎng)期市場(chǎng)調(diào)查后發(fā)現(xiàn),商品的月總產(chǎn)量穩(wěn)定在600件,商品的月銷售量a(件)由固定銷售量與浮動(dòng)銷售量?jī)蓚(gè)部分組成,其中固定銷售量保持不變,浮動(dòng)銷售量與售價(jià)x(元/件)(x≤10)成反比,且得到了如下表格中的信息:

          售價(jià)x(元/件)

          5

          8

          月銷售量Q(件)

          580

          400

          1)求Q關(guān)于x的函數(shù)關(guān)系式;

          2)若生產(chǎn)的所有商品正好銷售完,求售價(jià)x;

          3)求售價(jià)x為多少時(shí),月銷售額最大,并求這個(gè)最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4)B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.

          (1)畫出△A1OB1.

          (2)在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長(zhǎng)為_______.

          (3)求在旋轉(zhuǎn)過程中線段AB掃過的圖形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABN中,∠B =90°,點(diǎn)MAB上的動(dòng)點(diǎn)(不與A,B兩點(diǎn)重合),點(diǎn)CBN延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)N重合),且AM=BC,CN=BM,連接CMAN交于點(diǎn)P.

          (1)在圖1中依題意補(bǔ)全圖形;

          (2)小偉通過觀察、實(shí)驗(yàn),提出猜想:在點(diǎn)M,N運(yùn)動(dòng)的過程中,始終有∠APM=45°.小偉把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的一種思路:

          要想解決這個(gè)問題,首先應(yīng)想辦法移動(dòng)部分等線段構(gòu)造全等三角形,證明線段相等,再構(gòu)造平行四邊形,證明線段相等,進(jìn)而證明等腰直角三角形,出現(xiàn)45°的角,再通過平行四邊形對(duì)邊平行的性質(zhì),證明∠APM=45°.

          他們的一種作法是:過點(diǎn)MAB下方作MDAB于點(diǎn)M,并且使MD=CN.通過證明△AMDCBM,得到AD=CM,再連接DN,證明四邊形CMDN是平行四邊形,得到DN=CM,進(jìn)而證明△ADN是等腰直角三角形,得到∠DNA=45°.又由四邊形CMDN是平行四邊形,推得∠APM=45°.使問題得以解決.

          請(qǐng)你參考上面同學(xué)的思路,用另一種方法證明∠APM=45°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過,,三點(diǎn).

          求拋物線的解析式;

          若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.

          若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、QB、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】分類討論在數(shù)學(xué)中既是一個(gè)重要的策略思想又是一個(gè)重要的數(shù)學(xué)方法.例如對(duì)于像x2+|x|-60這樣含有絕對(duì)值符號(hào)的方程,可采用如下的分類討論方法:

          解:當(dāng)x≥0時(shí),原方程可化為x2+x-60.

          解得:x1-3x22.

          x≥0,∴x2.

          當(dāng)x0時(shí),原方程可化為x2-x-60,

          解得:x13x2-2.

          x0,∴x-2.

          綜上可得:原方程的解為x1-2,x22.

          仿照上面的解法,解方程:x2+|2x-1|-40.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案