日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=x2+bx-3a過(guò)點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
          (1)求拋物線的解析式;
          (2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
          (3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (1)把A(1,0),B(0,-3)代入y=x2+bx-3a,
          1+b-3a=0
          -3a=-3

          解得
          a=1
          b=2
          ,
          ∴拋物線的解析式為y=x2+2x-3;

          (2)過(guò)點(diǎn)P作PD⊥y軸,垂足為D,
          令y=0,得x2+2x-3=0,
          解得x1=-3,x2=1,
          ∴點(diǎn)C(-3,0),
          ∵B(0,-3),
          ∴△BOC為等腰直角三角形,
          ∴∠CBO=45°,
          ∵PB⊥BC,
          ∴∠PBD=45°,
          ∴PD=BD.
          ∴可設(shè)點(diǎn)P(x,-3+x),
          則有-3+x=x2+2x-3,
          ∴x=-1,
          ∴P點(diǎn)坐標(biāo)為(-1,-4);

          (3)由(2)知,BC⊥BP,
          (i)當(dāng)BP為直角梯形一底時(shí),由圖象可知點(diǎn)Q不可能在拋物線上;
          (ii)當(dāng)BC為直角梯形一底,BP為直角梯形腰時(shí),
          ∵B(0,-3),C(-3,0),
          ∴直線BC的解析式為y=-x-3,
          ∵直線PQBC,
          ∴直線PQ的解析式為y=-x+b,
          又P(-1,-4),
          ∴PQ的解析式為:y=-x-5,
          聯(lián)立方程組得
          y=-x-5
          y=x2+2x-3
          ,
          解得x1=-1,x2=-2,
          ∴x=-2,y=-3,
          即點(diǎn)Q(-2,-3),
          ∴符合條件的點(diǎn)Q的坐標(biāo)為(-2,-3).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,拋物線y=mx2+2mx-3m(m≠0)的頂點(diǎn)為H,與x軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線l:y=
          3
          3
          x+
          3
          對(duì)稱,過(guò)點(diǎn)B作直線BKAH交直線l于K點(diǎn).
          (1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線l上;
          (2)求此拋物線的解析式;
          (3)將此拋物線向上平移,當(dāng)拋物線經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,直接寫出NK的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知二次函數(shù)y=
          1
          2
          x2+bx+c的圖象與x軸只有一個(gè)公共點(diǎn)M,與y軸的交點(diǎn)為A,過(guò)點(diǎn)A的直線y=x+c與x軸交于點(diǎn)N,與這個(gè)二次函數(shù)的圖象交于點(diǎn)B.
          (1)求點(diǎn)A、B的坐標(biāo)(用含b、c的式子表示);
          (2)當(dāng)S△BMN=4S△AMN時(shí),求二次函數(shù)的解析式;
          (3)在(2)的條件下,設(shè)點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),那么是否存在這樣的點(diǎn)P,使得以P、A、M為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動(dòng)點(diǎn)(端點(diǎn)除外),過(guò)點(diǎn)P作PDAC,交BC于點(diǎn)D,連接CP.
          (1)求該拋物線的解析式;
          (2)當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),BP2=BD•BC;
          (3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,一單杠高2.2m,兩立柱間的距離為1.6m,將一根繩子的兩端拴于立柱與鐵杠的結(jié)合處A、B,繩子自然下垂,雖拋物線狀,一個(gè)身高0.7m的小孩站在距立柱0.4m處,其頭部剛好觸上繩子的D處,求繩子的最低點(diǎn)O到地面的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          實(shí)數(shù)x、y滿足(x-2)2+y2=3,那么,
          y
          x
          的最大值是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,梯形ABCD中,ABDC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于點(diǎn)E,將△ADE沿直線DE折疊,點(diǎn)A落在F處,DF交BC于點(diǎn)G.
          (1)用含有x的代數(shù)式表示BF的長(zhǎng).
          (2)設(shè)四邊形DEBG的面積為S,求S與x的函數(shù)關(guān)系式.
          (3)當(dāng)x為何值時(shí),S有最大值,并求出這個(gè)最大值.
          [參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點(diǎn)坐標(biāo)為(-
          b
          2a
          ,
          4ac-b2
          4a
          )].

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,拋物線y=
          1
          2
          x2-
          5
          2
          x與x軸交于O,A兩點(diǎn).半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.
          (1)點(diǎn)Q的橫坐標(biāo)是______(用含t的代數(shù)式表示);
          (2)若⊙P與⊙Q相離,則t的取值范圍是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖①,在Rt△ABC中,∠C=90°,邊BC的長(zhǎng)為20cm,邊AC的長(zhǎng)為hcm,在此三角形內(nèi)有一個(gè)矩形CFED,點(diǎn)D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長(zhǎng)為xcm,矩形CFED的面積為y(單位:cm2).
          (1)當(dāng)h等于30時(shí),求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
          (2)在(1)的條件下,矩形CFED的面積能否為180cm2?請(qǐng)說(shuō)明理由;
          (3)若y與x的函數(shù)圖象如圖②所示,求此時(shí)h的值.
          (參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)x=-
          b
          2a
          時(shí),y最大(。┲=
          4ac-b2
          4a
          .)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案