【題目】如圖,已知AD是△ABC的角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,BD=DG.
下列結(jié)論:(1)DE=DF;(2)∠B=∠DGF; (3)AB<AF+FG;(4)若△ABD和△ADG的面積分別是50和38,則△DFG的面積是8.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】B
【解析】
(1)根據(jù)角平分線的性質(zhì)可得出DE=DF,結(jié)論(1)正確;
(2)由DE=DF、∠BED=∠GFD、BD=GD可證出△BDE≌△GDF(HL),根據(jù)全等三角形的性質(zhì)可得出∠B=∠DGF,結(jié)論(2)正確;
(3)利用全等三角形的判定定理AAS可證出△ADE≌△ADF,由此可得出AE=AF,根據(jù)△BDE≌△GDF可得出BE=GF,結(jié)合AB=AE+EB即可得出AB=AF+FG,結(jié)論(3)不正確;
(4)根據(jù)全等三角形的性質(zhì)可得出S△ADE=S△ADF、S△BDE=S△GDF,結(jié)合S△ABD=S△ADE+S△BDE=50、S△ADG=S△ADF-S△GDF=38可求出△DFG的面積是6,結(jié)論(4)不正確.綜上即可得出結(jié)論.
(1)∵AD是△ABC的角平分線,DE⊥AB,DF⊥AC,
∴DE=DF,結(jié)論(1)正確;
(2)在△BDE和△GDF中,,
∴△BDE≌△GDF(HL),
∴∠B=∠DGF,結(jié)論(2)正確;
(3)在△ADE和△ADF中,
∴△ADE≌△ADF(AAS),
∴AE=AF.
∵△BDE≌△GDF,
∴BE=GF,
∴AB=AE+EB=AF+FG,結(jié)論(3)不正確;
(4)∵△ADE≌△ADF,△BDE≌△GDF,
∴
∵
∴,結(jié)論(4)不正確。
綜上所述:正確的結(jié)論有(1)(2).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x和直線y=﹣x+5相交于點(diǎn)M,直線PQ⊥x軸,分別交直線y=﹣x+5和直線y=x于點(diǎn)P、Q,點(diǎn)R是y軸上一點(diǎn),若△PQR為等腰直角三角形.求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)再現(xiàn):已知,如圖,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,∠MAN=45°,延長(zhǎng)CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識(shí),我們可以證明MN=BM+DN.
知識(shí)探究:(1)在如圖中,作AH⊥MN,垂足為點(diǎn)H,猜想AH與AB有什么數(shù)量關(guān)系?并證明;
知識(shí)應(yīng)用:(2)如圖,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,AD=6,則CD的長(zhǎng)為 ;
知識(shí)拓展:(3)如圖,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F為邊CD上一點(diǎn),∠FEC=2∠BAE,AB=24,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)(x>0,k≠0)的圖象經(jīng)過(guò)線段BC的中點(diǎn)D.
(1)求k的值;
(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(dòng)(不與點(diǎn)D重合),過(guò)點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:(1)如果 ,那么點(diǎn)
是線段
的中點(diǎn);(2)相等的兩個(gè)角是對(duì)頂角;(3)直角三角形的兩個(gè)銳角互余;(4)同位角相等;(5)兩點(diǎn)之間,直線最短.其中真命題的個(gè)數(shù)有( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,
,高
、
相交于點(diǎn)
,
,且
.
(1)求線段 的長(zhǎng);
(2)動(dòng)點(diǎn) 從點(diǎn)
出發(fā),沿線段
以每秒 1 個(gè)單位長(zhǎng)度的速度向終點(diǎn)
運(yùn)動(dòng),動(dòng)點(diǎn)
從 點(diǎn)
出發(fā)沿射線
以每秒 4 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),
兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)
到達(dá)
點(diǎn)時(shí),
兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)
的運(yùn)動(dòng)時(shí)間為
秒,
的面積為
,請(qǐng)用含
的式子表示
,并直接寫(xiě)出相應(yīng)的
的取值范圍;
(3)在(2)的條件下,點(diǎn) 是直線
上的一點(diǎn)且
.是否存在
值,使以點(diǎn)
為頂 點(diǎn)的三角形與以點(diǎn)
為頂點(diǎn)的三角形全等?若存在,請(qǐng)直接寫(xiě)出符合條件的
值; 若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號(hào)客車 | B型號(hào)客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號(hào)的客車各有多少輛?
(2)某中學(xué)計(jì)劃租用A、B兩種型號(hào)的客車共8輛,同時(shí)送七年級(jí)師生到沙家浜參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車的總費(fèi)用不超過(guò)4600元.
①求最多能租用多少輛A型號(hào)客車?
②若七年級(jí)的師生共有305人,請(qǐng)寫(xiě)出所有可能的租車方案,并確定最省錢(qián)的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長(zhǎng)AB與DE的延長(zhǎng)線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CEF其中正確的是( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com