日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個頂點均在格點上,

          請按要求完成下列各題:

          (1)用2B鉛筆畫ADBC(D為格點),連接CD;

          (2)線段CD的長為   ;

          (3)請你在ACD的三個內(nèi)角中任選一個銳角,若你所選的銳角是   ,則它所對應的正弦函數(shù)值是   ;

          (4)若EBC中點,則tanCAE的值是   

          【答案】(1)作圖見解析;(2);(3)CAD;;或∠ADC,.

          【解析】試題分析:(1)直接利用網(wǎng)格結合平行線的判定方法得出D點位置;

          (2)直接利用勾股定理得出DC的長;

          (3)利用勾股定理的逆定理得出ACD是直角三角形,進而得出答案;

          (4)根據(jù)直角三角形斜邊上的中線等于斜邊的一半得出AEEC,可得∠ACB=∠CAE,然后在Rt△ABC中求出tan∠ACB的值即為tanCAE的值.

          試題解析:

          解:(1)如圖所示:

          D點即為所求;

          2DC;

          故答案為:;

          3)在ACD的三個內(nèi)角中所選的銳角是:∠CAD,

          CDAD5,AC

          CD2AC2AD2,

          ∴△ACD是直角三角形,

          ∴∠CAD它所對應的正弦函數(shù)值是:

          當所選的銳角是:∠ADC,

          則∠ADC它所對應的正弦函數(shù)值是:

          故答案為:∠CAD或∠ADC,;

          (4)AB,ACBC=5,

          AB2AC2BC2,

          ∴△ABC為直角三角形,

          EBC中點,

          AEEC

          ∴∠ACB=∠CAE,

          tanCAE=tan∠ACB

          故答案為:

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,在邊長為a米的正方形草坪上修建兩條寬為b米的道路.

          (1)為了求得剩余草坪的面積,小明同學想出了兩種辦法,結果分別如下:

          方法①: 方法②:

          請你從小明的兩種求面積的方法中,直接寫出含有字母a,b代數(shù)式的等式是:

          (2)根據(jù)(1)中的等式,解決如下問題:

          ①已知:,求的值;

          ②己知:,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】解不等式()或方程():

          (1)(2)

          (3)(x-5)(x+4)=10;(4).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖ABC中,分別延長邊AB,BCCA,使得BDABCE2BC,AF3CA,若ABC的面積為1,則DEF的面積為( )

          A. 12B. 14C. 16D. 18

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是(  )

          A. 48B. 63C. 80D. 99

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校開設了豐富多彩的實踐類拓展課程,分別設置了體育類、藝術類、文學類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學生喜愛的拓展課類別,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

          (1)此次共調(diào)查了多少人?

          (2)請將條形統(tǒng)計圖補充完整

          (3)求文學類課程在扇形統(tǒng)計圖中所占圓心角的度數(shù);

          (4)若該校有1500名學生,請估計喜歡體育類拓展課的學生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,的頂點均在格點上.(畫圖要求:先用鉛筆畫圖,然后用黑色水筆描畫)

          1)①畫出繞點按逆時針方向旋轉(zhuǎn)后的;

          ②連結,請判斷是怎樣的三角形,并簡要說明理由.

          2)畫出,使關于點成中心對稱;

          3)請指出如何平移,使得能拼成一個長方形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則F、C兩點的距離為______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.

          (1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;

          (2)函數(shù)y=2x2-bx.

          ①若其不變長度為零,求b的值;

          ②若1≤b≤3,求其不變長度q的取值范圍;

          (3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1G2兩部分組成,若其不變長度q滿足0≤q≤3,m的取值范圍為 .

          查看答案和解析>>

          同步練習冊答案