日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線軸交于,兩點(AB的左側(cè)),與軸交于點C,頂點為D.

          (1)求此拋物線的解析式.

          (2)以點B為直角頂點作直角三角形BCE,斜邊CE與拋物線交于點P,且CP=EP,求點P的坐標(biāo).

          (3)將△BOC繞著它的頂點順時針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△BO’C’.當(dāng)

          旋轉(zhuǎn)后的△BO’C’有一邊與BD重合時,求△BO’C’不在BD上的頂點的坐標(biāo).

          【答案】(1) ;(2) ;(3) .

          【解析】

          試題(1)利用根與系數(shù)的關(guān)系,列出方程求出m即可;

          (2)根據(jù)圖形,可設(shè)P(m,-m+2m+3),求出A、B、C的坐標(biāo),根據(jù)PC=PB,利用兩點間距離公式,列出方程即可;

          (3)應(yīng)分為兩種情況討論:①BC′與BP重合,此時O′為所求點,過O′作x軸的垂線,設(shè)垂足為D,再等量代換后根據(jù)兩角對應(yīng)相等的兩三角形相似,證得△PBC∽△O′BD,即可由比例線段和勾股定理求出O′的坐標(biāo);②當(dāng)BO′與BP重合時,C′為所求點,可過B作直線BE⊥x軸,過C′作C′E⊥BE與E,按照①可求C′的坐標(biāo).

          試題解析:,

          ,,,,

          ,

          設(shè),

          ,

          ,

          重合,

          ,

          ,

          ,

          ,

          ,

          ,

          重合時,過軸,

          ,

          ,

          ,

          ,

          ,

          ,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線經(jīng)過原點,與軸的另一個交點為,將拋物線向右平移個單位得到拋物線, 軸于, 兩點(點在點的左邊),交軸于點

          )求拋物線的解析式及頂點坐標(biāo).

          )以為斜邊向上作等腰直角三角形,當(dāng)點落在拋物線的對稱軸上時,求拋物線的解析式.

          )若拋物線的對稱軸存在點,使為等邊三角形,請直接寫出的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠ABC>60°,BAC<60°,AB為邊作等邊△ABD(點C、D在邊AB的同側(cè)),連接CD

          1若∠ABC90°BAC30°,求∠BDC的度數(shù);

          2當(dāng)∠BAC2BDC,請判斷△ABC的形狀并說明理由;

          3)當(dāng)∠BCD等于多少度時,∠BAC2BDC恒成立

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知三角形的三個頂點的坐標(biāo)分別為,

          1)作出三角形關(guān)于軸對稱的三角形

          2)點的坐標(biāo)為 .

          3)①利用網(wǎng)絡(luò)畫出線段的垂直平分線;②為直線上上一動點,則的最小值為 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是半圓的直徑,點O是圓心,點COA的中點,CD⊥OA交半圓于點D,點E的中點,連接AE、OD,過點DDP∥AEBA的延長線于點P

          1)求∠AOD的度數(shù);

          2)求證:PD是半圓O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABC為直角三角形,∠ACB=900,AC=BC,ACx軸上,點B坐標(biāo)為(3m)m>0),線段ABy軸相交于點D,以P10)為頂點的拋物線過點B、D

          1)求點A的坐標(biāo)(用m表示);

          2)求拋物線的解析式;

          3)設(shè)點Q為拋物線上點P至點B之間的一動點,連結(jié)PQ并延長交BC于點E,連結(jié)BQ并延長交AC于點F,試證明:FC(AC+BC)為定值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一次函數(shù),是常數(shù),)的圖象過兩點.

          1)在圖中畫出該一次函數(shù)并求其表達式;

          2)若點在該一次函數(shù)圖象上,求的值;

          3)把的圖象向下平移3個單位后得到新的一次函數(shù)圖象,在圖中畫出新函數(shù)圖形,并直接寫出新函數(shù)圖象對應(yīng)的表達式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正確的結(jié)論有________(填序號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,二次函數(shù)y=x2+bx+c的圖象過點A(1,0)和C(0,﹣3)

          (1)求這個二次函數(shù)的解析式;

          (2)如果這個二次函數(shù)的圖象與x軸的另一個交點為B,求線段AB的長.

          (3)在這條拋物線上是否存在一點P,使ABP的面積為8?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案