日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)= +a(x﹣1)﹣2.
          (1)當(dāng)a=0時,求函數(shù)f(x)的極值;
          (2)若對任意x∈(0,1)∪(1,+∞),不等式 恒成立,求實數(shù)a的取值范圍.

          【答案】
          (1)解:當(dāng)a=0時,f(x)= ﹣2.x>0,

          ∴f′(x)=

          令f′(x)=0,解得x= ,

          當(dāng)f′(x)>0時,即0<x< ,函數(shù)單調(diào)遞增,

          當(dāng)f′(x)<0時,即x> ,函數(shù)單調(diào)遞減,

          ∴當(dāng)x= 時,函數(shù)f(x)有極大值,極大值為f( )=e﹣2,無極小值;


          (2)解:原不等式等價于 + >0,即 >0,

          [lnx+a(x2﹣1)﹣2(x﹣1)]>0,

          令g(x)=lnx+a(x2﹣1)﹣2(x﹣1),g(1)=0,

          ∴g′(x)= +2ax﹣2= ,

          [lnx+a(x2﹣1)﹣2(x﹣1)]>0,

          g(2)=ln2+3a﹣2>0a> >0,

          ①當(dāng)a≥ 時,2ax2﹣2x+1≥x2﹣2x+1≥(x﹣1)2>0,

          ∴g′(x)>0,

          ∴g(x)在(0,+∞)上單調(diào)遞增,

          ∴x∈(0,1),g(x)<0,x∈(1,+∞),g(x)>0,

          g(x)>0,

          ②當(dāng)0<a< 時,令2ax2﹣2x+1=0,解得x= >1,

          ∴x∈(1, )時,g′(x)<0,函數(shù)g(x)單調(diào)遞減,

          ∴g(x)<g(1)=0,

          g(x)<0,不合題意,舍去,

          綜上所述a≥


          【解析】(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的極值的關(guān)系即可求出,(2)原不等式等價于 + >0,即 >0,構(gòu)造函數(shù)g(x)=lnx+a(x2﹣1)﹣2(x﹣1),根據(jù)導(dǎo)數(shù)和函數(shù)的最值得關(guān)系,分類討論即可證明
          【考點精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
          (Ⅰ)求證:PB⊥DE;
          (Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E為AD的中點,異面直線AP與CD所成的角為90°.
          (Ⅰ)證明:△PBE是直角三角形;
          (Ⅱ)若二面角P﹣CD﹣A的大小為45°,求二面角A﹣PE﹣C的余弦值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數(shù)方程 (α為參數(shù)) (Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo) ,判斷點P與直線l的位置關(guān)系;
          (Ⅱ)設(shè)點Q為曲線C上的一個動點,求它到直線l的距離的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an} 滿足a1= ,a2= ,an+2﹣an+1=(﹣1)n+1(an+1﹣an)(n∈N*),數(shù)列{an}的前n項和為Sn , 則S2017=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】A,B兩種機(jī)器人都被用來搬運化工原料,A型機(jī)器人比B型機(jī)器人每小時多搬運40千克,A型機(jī)器人搬運1200千克所用時間與B型機(jī)器人搬運800千克所用時間相等.設(shè)B型機(jī)器人每小時搬運化工原料x千克,根據(jù)題意可列方程為(
          A. =
          B. =
          C. =
          D. =

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若二次函數(shù)y=x2+mx的對稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( 。
          A.x1=0,x2=6
          B.x1=1,x2=7
          C.x1=1,x2=﹣7
          D.x1=﹣1,x2=7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知平行四邊形ABCD的三個頂點坐標(biāo)分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關(guān)于點D的說法正確的是( )
          甲:點D在第一象限
          乙:點D與點A關(guān)于原點對稱
          丙:點D的坐標(biāo)是(﹣2,1)
          。狐cD與原點距離是
          A.甲乙
          B.丙丁
          C.甲丁
          D.乙丙

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.

          (1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是
          (2)若甲、乙均可在本層移動.
          ①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
          ②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.

          查看答案和解析>>

          同步練習(xí)冊答案