日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____

          【答案】①②③④⑤.

          【解析】先計算出DE=2,EC=4,再根據(jù)折疊的性質(zhì)AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根據(jù)“HL”可證明Rt△ABG≌Rt△AFG,則GB=GF,∠BAG=∠FAG,所以∠GAE=∠BAD=45°;GE=GF+EF=BG+DE;設(shè)BG=x,則GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根據(jù)勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,則BG=CG=3,則點(diǎn)G為BC的中點(diǎn);同時得到GF=GC,根據(jù)等腰三角形的性質(zhì)得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根據(jù)三角形外角性質(zhì)得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根據(jù)平行線的判定方法得到CF∥AG;過F作FH⊥DC,則△EFH∽△EGC,△EFH∽△EGC,由相似比為,可計算S△FGC.根據(jù)同底等高的三角形的面積相等即可得到結(jié)論.

          解:∵正方形ABCD的邊長為6,CE=2DE,

          ∴DE=2,EC=4,

          ∵把△ADE沿AE折疊使△ADE落在△AFE的位置,

          ∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,

          在Rt△ABG和Rt△AFG中,AB=AE,AG=AG,

          ∴Rt△ABG≌Rt△AFG(HL),

          ∴GB=GF,∠BAG=∠FAG,

          ∴∠GAE=∠FAE+∠FAG=∠BAD=45°,所以①正確;

          設(shè)BG=x,則GF=x,C=BC﹣BG=6﹣x,

          在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,

          ∵CG2+CE2=GE2,

          ∴(6﹣x)2+42=(x+2)2,解得x=3,

          ∴BG=3,CG=6﹣3=3

          ∴BG=CG,所以②正確;

          ∵EF=ED,GB=GF,

          ∴GE=GF+EF=BG+DE,所以③正確;

          ∵GF=GC,

          ∴∠GFC=∠GCF,

          又∵Rt△ABG≌Rt△AFG,

          ∴∠AGB=∠AGF,

          而∠BGF=∠GFC+∠GCF,

          ∴∠AGB+∠AGF=∠GFC+∠GCF,

          ∴∠AGB=∠GCF,

          ∴CF∥AG,所以④正確;

          過F作FH⊥DC

          ∵BC⊥DH,

          ∴FH∥GC,

          ∴△EFH∽△EGC,

          =

          EF=DE=2,GF=3,

          ∴EG=5,

          ∴△EFH∽△EGC,

          ∴相似比為: =,

          ∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4×(×3)==3.6,

          連接AC,

          ∵CF∥AG,

          ∴S△FCA=S△FGC=3.6,

          所以⑤正確.

          故正確的有①②③④⑤,

          故答案為:①②③④⑤.

          “點(diǎn)睛”本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了三角形全等的判定與性質(zhì),勾股定理和正方形的性質(zhì).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形的對角線相交于點(diǎn),將沿所在直線折疊,得到

          1)求證:四邊形是菱形;

          2)若,當(dāng)四邊形是正方形時,等于多少?

          3)若,,邊上的動點(diǎn),邊上的動點(diǎn),那么的最小值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某游泳館普通票價20/,暑假為了促銷新推出兩種優(yōu)惠卡

          金卡售價600/,每次憑卡不再收費(fèi)

          銀卡售價150/,每次憑卡另收10

          暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費(fèi)用為y

          (1)分別寫出選擇銀卡、普通票消費(fèi)時,yx之間的函數(shù)關(guān)系式;

          (2)在同一坐標(biāo)系中,若三種消費(fèi)方式對應(yīng)的函數(shù)圖象如圖所示,請求出點(diǎn)A、B、C的坐標(biāo)

          (3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

          (1)當(dāng)A,B,C三點(diǎn)在同一直線上時(如圖1),求證:MAN的中點(diǎn);

          (2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,BE三點(diǎn)在同一直線上時(如圖2),求證:CAN為等腰直角三角形;

          (3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:

          (習(xí)題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AECD相交于點(diǎn)F.求證:∠CFE=CEF;

          (變式思考)如圖2,在ABC中,∠ACB=90°,CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長線于點(diǎn)F,其反向延長線與BC邊的延長線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說明理由;

          (探究廷伸)如圖3,在ABC中,在AB上存在一點(diǎn)D,使得∠ACD=B,角平分線AECD于點(diǎn)FABC的外角∠BAG的平分線所在直線MNBC的延長線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知函數(shù)y=x0)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過點(diǎn)AACx軸,垂足為C,過點(diǎn)BBDy軸,垂足為DACBD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E

          1)若AC=OD,求a、b的值;

          2)若BC∥AE,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,FC在一條直線上).

          (1)求辦公樓AB的高度;

          (2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.

          (參考數(shù)據(jù):sin22°,cos22°,tan22°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題

          (1)在圖中建立正確的平面直角坐標(biāo)系;

          (2)根據(jù)所建立的坐標(biāo)系,寫出BC的坐標(biāo);

          (3)計算△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】作圖:

          (1)如圖甲,以點(diǎn)O為中心,把點(diǎn)P順時針旋轉(zhuǎn)45°;

          (2)如圖乙,以點(diǎn)O為中心,把線段AB逆時針旋轉(zhuǎn)90°;

          (3)如圖丙,以點(diǎn)O為中心,把ABC順時針旋轉(zhuǎn)120°;

          (4)如圖丁,以點(diǎn)B為中心,把ABC旋轉(zhuǎn)180°.

          查看答案和解析>>

          同步練習(xí)冊答案