日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•泰州)如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點A、B、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1,然后將△A1B1C1繞點A1順時針旋轉(zhuǎn)90°得到△A1B2C2
          (1)在網(wǎng)格中畫出△A1B1C1和△A1B2C2
          (2)計算線段AC在變換到A1C2的過程中掃過區(qū)域的面積(重疊部分不重復計算)
          分析:(1)根據(jù)圖形平移及旋轉(zhuǎn)的性質(zhì)畫出△A1B1C1及△A1B2C2即可;
          (2)根據(jù)圖形平移及旋轉(zhuǎn)的性質(zhì)可知,將△ABC向下平移4個單位AC所掃過的面積是以4為底,以2為高的平行四邊形的面積;再向右平移3個單位AC掃過的面積是以3為底以2為高的平行四邊形的面積;當△A1B1C1繞點A1順時針旋轉(zhuǎn)90°到△A1B2C2時,A1C1所掃過的面積是以A1為圓心以以2
          2
          為半徑,圓心角為90°的扇形的面積,再減去重疊部分的面積,根據(jù)平行四邊形的面積及扇形面積公式進行解答即可.
          解答:解:(1)如圖所示:

          (2)∵圖中是邊長為1個單位長度的小正方形組成的網(wǎng)格,
          ∴AC=
          22+22
          =2
          2
          ,
          ∵將△ABC向下平移4個單位AC所掃過的面積是以4為底,以2為高的平行四邊形的面積;再向右平移3個單位AC所掃過的面積是以4為底,以2為高的平行四邊形的面積;再向右平移3個單位AC掃過的面積是以3為底以2為高的平行四邊形的面積;當△A1B1C1繞點A1順時針旋轉(zhuǎn)90°到△A1B2C2時,A1C1所掃過的面積是以A1為圓心以2
          2
          為半徑,圓心角為90°的扇形的面積,重疊部分是以A1為圓心,以2
          2
          為半徑,圓心角為45°的扇形的面積,
          ∴線段AC在變換到A1C2的過程中掃過區(qū)域的面積=4×2+3×2+
          90π×(2
          2
          )2
          360
          -
          45π×(2
          2
          )2
          360
          =14+π.
          點評:本題考查的是旋轉(zhuǎn)變換及平移變換,扇形的面積公式,熟知圖形旋轉(zhuǎn)、平移不變性的特點是解答此題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2012•泰州)如圖,數(shù)軸上的點P表示的數(shù)是-1,將點P向右移動3個單位長度得到點P′,則點P′表示的數(shù)是
          2
          2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•泰州)如圖,△ABC中,∠C=90°,∠BAC的平分線交BC于點D,若CD=4,則點D到AB的距離是
          4
          4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•泰州)如圖,在邊長相同的小正方形組成的網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點P,則tan∠APD的值是
          2
          2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•泰州)如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5.OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
          (1)試判斷線段AB與AC的數(shù)量關系,并說明理由;
          (2)若PC=2
          5
          ,求⊙O的半徑和線段PB的長;
          (3)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

          查看答案和解析>>

          同步練習冊答案