【題目】如圖,正方形的對角線
和
相交于點
,正方形
的邊
交
于點
,
交
于點
.
(1)求證:;
(2)如果正方形的邊長為
,那么正方形
繞
點轉(zhuǎn)動的過程中,與正方形
重疊部分的面積始終等于__________.(用含
的代數(shù)式表示)
【答案】(1)見解析;(2)
【解析】
(1)由題意得OA=OB,∠OAB=∠OBC=45°又因為∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根據(jù)ASA可證△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得結(jié)論;
(2)由全等三角形的性質(zhì)可得S△AOE=S△BOF,可得重疊部分的面積為正方形面積的,即可求解.
(1)在正方形中,
,
,
.
則,
∵正方形中
,
∴,∴
.
在和
中,
,
∴,
∴,
∴.
∵中,
,
,
∴;
(2)∵△AOE≌△BOF,
∴S△AOE=S△BOF,
∴重疊部分的面積=S△AOB=S正方形ABCD=
,
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,點P從點A開始,沿AB向點B以
的速度移動,點Q從B點開始沿BC以
的速度移動,如果P、Q分別從A、B同時出發(fā):
幾秒后四邊形APQC的面積是31平方厘米;
若用S表示四邊形APQC的面積,在經(jīng)過多長時間S取得最小值?并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=﹣x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了倡導(dǎo)“全民閱讀”,某校為調(diào)查了解學(xué)生家庭藏書情況,隨機(jī)抽取本校部分學(xué)生進(jìn)行調(diào)查,并繪制成統(tǒng)計圖表如下:
學(xué)生家庭藏書情況扇形統(tǒng)計圖
類別 | 家庭藏書 | 學(xué)生人數(shù) |
16 | ||
50 | ||
70 |
根據(jù)以上信息,解答下列問題:
(1)共抽樣調(diào)查了______名學(xué)生,______;
(2)在扇形統(tǒng)計圖中,“”對應(yīng)扇形的圓心角為_______
;
(3)若該校有2000名學(xué)生,請估計全校學(xué)生中家庭藏書超過60本的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護(hù)國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔
在北偏東
方向上,繼續(xù)航行1小時到達(dá)
處,此時測得燈塔
在北偏東
方向上.
(1)求的度數(shù);
(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用1000元人民幣購進(jìn)水果銷售,過了一段時間又用2800元購進(jìn)這種水果,所購數(shù)量是第一次購進(jìn)數(shù)量的2倍,但每千克的價格比第一次購進(jìn)的貴了2元.
(1)求該商店第一次購進(jìn)水果多少千克?
(2)該商店兩次購進(jìn)的水果按照相同的標(biāo)價銷售一段時間后,將最后剩下的50千克按照標(biāo)價半價出售.售完全部水果后,利潤不低于3100元,則最初每千克水果的標(biāo)價是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師出了一道題,如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°
(1)求∠DAE的度數(shù);
(2)小紅解完第(1)小題說,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具體度數(shù),也能推出∠DAE的度數(shù)小紅的說法,對不對?如果你認(rèn)為對,請推導(dǎo)出∠DAE的度數(shù):如果你認(rèn)為不對,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局為了了解初二學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機(jī)抽樣調(diào)查了某校初二學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中的值為______,
的值為______.
(2)扇形統(tǒng)計圖中參加綜合實踐活動天數(shù)為6天的扇形的圓心角大小為______.
(3)請你估計該市初二學(xué)生每學(xué)期參加綜合實踐活動的平均天數(shù)大約是多少天(精確到個位)?
(4)若全市初二學(xué)生共有90000名學(xué)生,估計有多少名學(xué)生一個學(xué)期參加綜合社會活動的天數(shù)不少于5天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com