日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖△ABC中,∠ACB90°,以AC為直徑的OABD,過DO的切線交BC于點(diǎn)EEFAB,垂足為F

          (1)求證:DEBC

          (2)AC6,BC8,求SACDSEDF的值.

          【答案】(1)證明見解析;(2)SACDSEDF94.

          【解析】

          (1)根據(jù)題意可知:EC、ED均是圓O的切線,根據(jù)切線長定理可得出ECDE,∠ECD=∠EDC;根據(jù)等角的余角相等,可得出∠EDB=∠B,因此DEBE,由此可得出DEECBE,由此可得證;
          (2)由(1)知:DEBE,因此DFBF,根據(jù)等高的三角形面積比等于底邊比可得出EDF的面積是EDB的面積的一半,同理可得出EDB的面積是CDB的面積的一半,因此EDF的面積是CDB的面積的四分之一.那么本題只需得出ADCCDB的面積比即可,即得出ADBD的值即可.

          (1)EC、ED都是⊙O的切線,

          ECED,∠ECD=∠EDC

          ∵∠EDC+∠EDB=90°,∠ECD+∠B=90°

          ∴∠EDB=∠B

          EDBE

          DEBEEC

          DEBC

          (2)RtABC中,AC=6,BC=8,則AB=10,

          根據(jù)射影定理可得:

          ADAC2÷AB=3.6,

          BDBC2÷AB=6.4,

          SACDSBCDADBD=9:16,

          EDEBEFBD,

          SEDFSEBD

          同理可得SEBDSBCD,

          SEDFSBCD,

          SACDSEDF

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校有一塊長方形活動場地,長為2x米,寬比長少5米.實(shí)施“陽光體育”行動以后,學(xué)校為了擴(kuò)大學(xué)生的活動場地,讓學(xué)生能更好地進(jìn)行體育活動,將操場的長和寬都增加了4米.

          1)求擴(kuò)大后學(xué)生的活動場地的面積.(用含x的代數(shù)式表示)

          2)若x20,求活動場地擴(kuò)大后增加的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結(jié)論:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當(dāng)y=2時,x只能等于0.其中正確的是( )

          A. ①④ B. ③④ C. ②⑤ D. ③⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,BD為圓O的直徑,直線ED為圓O的切線,AC兩點(diǎn)在圓上,AC平分∠BAD且交BDF點(diǎn).若∠ADE19°,則∠AFB的度數(shù)為何?(  )

          A. 97° B. 104° C. 116° D. 142°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是O的直徑,AF是O切線,CD是垂直于AB的弦,垂足為E,過點(diǎn)C作DA的平行線與AF相交于點(diǎn)F,CD=,BE=2.

          求證:(1)四邊形FADC是菱形;

          (2)FC是O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應(yīng)值如表:

          下列說法正確的是( 。

          A. 拋物線的開口向下

          B. 當(dāng)x>-3時,yx的增大而增大

          C. 二次函數(shù)的最小值是-2

          D. 拋物線的對稱軸是x=-

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.

          (1)求拋物線的表達(dá)式;

          (2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1y2,請直接寫出n的取值范圍;

          (3)設(shè)點(diǎn)M(p,q)為拋物線上的一個動點(diǎn),當(dāng)﹣1p2時,點(diǎn)M關(guān)于y軸的對稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,的中點(diǎn).的半徑為3,動點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個單位的速度向點(diǎn)運(yùn)動,設(shè)運(yùn)動時間為.

          1)當(dāng)以為半徑的相切時,求的值;

          2)探究:在線段上是否存在點(diǎn),使得與直線相切,且與相外切?若存在,求出此時的值及相應(yīng)的的半徑;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請解答下列問題:

          (1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo);

          (2)將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)AA2的路徑長.

          查看答案和解析>>

          同步練習(xí)冊答案