日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,Rt△AB′C′是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,連接CC′交斜邊于點(diǎn)E,CC′的延長(zhǎng)線交BB′于點(diǎn)F.
          (1)證明:△ACE∽△FBE;
          (2)設(shè)∠ABC=α,∠CAC′=β,試探索α、β滿足什么關(guān)系時(shí),△ACE與△FBE是全等三角形,并說(shuō)明理由.

          【答案】
          (1)證明:∵Rt△AB′C′是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,

          ∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,

          ∴∠CAB+∠BAC′=∠C′AB′+∠BAC′,即∠CAC′=∠BAB′,

          ∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,

          ∴∠ACC′=∠ABB′,

          又∵∠AEC=∠FEB,

          ∴△ACE∽△FBE


          (2)解:當(dāng)β=2α?xí)r,△ACE≌△FBE.

          在△ACC′中,

          ∵AC=AC′,

          ∴∠ACC′= = =90°﹣α,

          在Rt△ABC中,

          ∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,

          ∴∠BCE=α,

          ∵∠ABC=α,

          ∴∠ABC=∠BCE,

          ∴CE=BE,

          由(1)知:△ACE∽△FBE,

          ∴∠BEF=∠CEA,∠FBE=∠ACE,

          又∵CE=BE,

          ∴△ACE≌△FBE


          【解析】(1)欲證△ACE∽△FBE,通過(guò)觀察發(fā)現(xiàn)兩個(gè)三角形已經(jīng)具備一組角對(duì)應(yīng)相等,即∠AEC=∠FEB,此時(shí),再證∠AC′C=∠ABB′即可.(2)欲證△ACE≌△FBE,由(1)知△ACE∽△FBE,只需證明CE=BE,由已知可證∠ABC=∠BCE=α,即證β=2α?xí)r,△ACE≌△FBE.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的判定的相關(guān)知識(shí),掌握相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS),以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在菱形ABCD中,CEABAB延長(zhǎng)線于點(diǎn)E,點(diǎn)F為點(diǎn)B關(guān)于CE的對(duì)稱點(diǎn),連接CF,分別延長(zhǎng)DCCF至點(diǎn)G,H,使FH=CG,連接AGDH交于點(diǎn)P

          (1)依題意補(bǔ)全圖1;

          (2)猜想AGDH的數(shù)量關(guān)系并證明;

          (3)若∠DAB=70°,是否存在點(diǎn)G,使得ADP為等邊三角形?若存在,求出CG的長(zhǎng);若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的運(yùn)算流程中,

          (1)若輸入的數(shù)x=﹣4,則輸出的數(shù)y=   

          (2)若輸出的數(shù)y=5,則輸入的數(shù)x=   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(
          A.①②
          B.②③
          C.①③
          D.①④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,量角器的直徑與直角三角板ABC的斜邊AB重合,其中量角器0刻度線的端點(diǎn)N與點(diǎn)A重合,射線CP從CA處出發(fā)沿順時(shí)針方向以每秒2度的速度旋轉(zhuǎn),CP與量角器的半圓弧交于點(diǎn)E,第35秒時(shí),點(diǎn)E在量角器上對(duì)應(yīng)的讀數(shù)是度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點(diǎn)A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點(diǎn)E的坐標(biāo)是(
          A.(2,﹣3)
          B.(2,3)
          C.(3,2)
          D.(3,﹣2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

          (1)求證:ABE≌△CDF;

          (2)若AC與BD交于點(diǎn)O,求證:AO=CO.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:像、、兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式例如,、等都是互為有理化因式在進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).

          例如;;

          解答下列問(wèn)題:

          (1)________互為有理化因式,將分母有理化得________;

          (2)計(jì)算:

          (3)己知有理數(shù)a、b滿足,求a、b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在學(xué)完“有理數(shù)的運(yùn)算”后,某中學(xué)七年級(jí)各班各選出5名學(xué)生組成一個(gè)代表隊(duì),在數(shù)學(xué)方老師的組織下進(jìn)行一次知識(shí)競(jìng)賽,競(jìng)賽規(guī)則是:每隊(duì)都分別給出50道題,答對(duì)一題得3分,不答或答錯(cuò)一題倒扣1分

          (1)如果2班代表隊(duì)最后得分142分,那么2班代表隊(duì)回答對(duì)了多少道題?

          (2)1班代表隊(duì)的最后得分能為145分嗎?請(qǐng)簡(jiǎn)要說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案