日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18、已知:如圖,以△ABC的邊AB為直徑的⊙O交邊AC于點(diǎn)D,且過(guò)點(diǎn)D的切線DE平分邊BC.
          (1)猜想DE與BE的數(shù)量關(guān)系,并說(shuō)明理由;
          (2)求證:BC是⊙O的切線.
          分析:(1)根據(jù)直徑所對(duì)的圓周角是直角可判定△BCD為直角三角形,又DE平分邊BC,所以由直角三角形斜邊上的中線等于斜邊的一半判定DE=BE;
          (2)因?yàn)锽點(diǎn)在圓上,所以證明∠ABC=90°即可.連接OD,因DE是切線,有∠ODE=90°.證明∠ABC=∠ODE.
          解答:解:(1)DE=BE.
          ∵AB為直徑,
          ∴∠ADB=90°.
          則∠BDC=90°,即△BCD為直角三角形.
          又DE平分邊BC,
          ∴DE=BE=EC.

          (2)連接OD.
          ∵DE是⊙O的切線,
          ∴∠ODE=90°.
          ∵DE=BE,OD=OB,
          ∴∠EDB=∠EBD,∠ODB=∠OBD,
          ∴∠EBD+∠OBD=∠EDB+∠ODB,
          即∠OBE=∠ODE=90°.
          又B點(diǎn)在圓上,
          ∴BC是⊙O的切線.
          點(diǎn)評(píng):此題考查了①直角三角形的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半;
          ②切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A,B),過(guò)點(diǎn)P作半圓O的切線分別交過(guò)A,B兩點(diǎn)的切線于D,C,AC、BD相交于N點(diǎn),連接ON、NP.下列結(jié)論:①四邊形ANPD是梯形;②ON=NP;③DP•PC為定值;④PA為∠NPD的平分線.其中一定成立的是( 。
          A、①②B、②④C、①③④D、②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:如圖,以△ABC的邊AB為直徑的⊙O交邊AC于點(diǎn)D,且過(guò)點(diǎn)D的切線DE平分邊BC.
          (1)BC與⊙O是否相切?請(qǐng)說(shuō)明理由;
          (2)當(dāng)△ABC滿足什么條件時(shí),以點(diǎn)O,B,E,D為頂點(diǎn)的四邊形是平行四邊形?并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:如圖,以Rt△ABC的斜邊AB為直徑作⊙O,D是⊙O上的點(diǎn),且有AC=CD.過(guò)點(diǎn)C作⊙O的切線,與BD的延長(zhǎng)線交于點(diǎn)E,連接CD.
          (1)試判斷BE與CE是否互相垂直,請(qǐng)說(shuō)明理由;
          (2)若CD=2
          5
          ,tan∠DCE=
          1
          2
          ,求⊙O的半徑長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀下列材料:
             李老師提出一個(gè)問(wèn)題:“已知:如圖1,AB=m(m>0),∠BAC=α(α為銳角),在射線AC上取一點(diǎn)D,使構(gòu)成的△ABD唯一確定,試確定線段BD的取值范圍.”
             小明同學(xué)說(shuō)出了自己的解題思路:以點(diǎn)B為圓心,以m為半徑畫(huà)圓(如圖2所示),D為⊙B與射線AC的交點(diǎn)(不與點(diǎn)A重合),連結(jié)BD,所以,當(dāng)BD=m時(shí),構(gòu)成的△ABD是唯一確定的.
              李老師說(shuō):“小明同學(xué)畫(huà)出的三角形是正確的,但是他的解答不夠全面.”

          對(duì)于李老師所提出的問(wèn)題,請(qǐng)給出你認(rèn)為正確的解答(寫(xiě)出BD的取值范圍,并在備用圖中畫(huà)出對(duì)應(yīng)的圖形,不寫(xiě)作法,保留作圖痕跡).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,以△ABC的一邊BC為直徑作半圓,交AB于E,過(guò)E點(diǎn)作半圓O的切線恰與AC垂直,試確定邊BC與AC的大小關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案