日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1RtABC中,∠ABC90°,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以BP為直徑作⊙OBC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)為E(點(diǎn)E在點(diǎn)P右側(cè)),連結(jié)DE、BE,已知AB3,BC6

          1)求線段BE的長;

          2)如圖2,若BP平分∠ABC,求∠BDE的正切值;

          3)是否存在點(diǎn)P,使得△BDE是等腰三角形,若存在,求出所有符合條件的CP的長;若不存在,請(qǐng)說明理由.

          【答案】1BE;(2tanBDE3;(3)符合條件的CP的長為33

          【解析】

          1)求出AC3,由三角形ABC的面積可求出BE的長;

          2)連接DP,證明CPD∽△CAB,得出2,設(shè)DPBDx,則CD2x,由CB3x6,得出x2,根據(jù)tanBDEtanBPE可得出答案;

          3)分三種情況,求出CPCD,求出CD,可得出答案.

          解:(1ABC90°AB3BC6,

          AC3

          BPO的直徑,

          BEP90°

          BEAC,

          SABC×AB×AC,

          BE;

          2BP平分∠ABC,

          DBPABC45°,

          連接DP,如圖1,

          BPO的直徑,

          DBP=∠DPB45°,

          可設(shè)DPBDx,

          CDP=∠ABC90°

          PDAB,

          ∴△CPD∽△CAB,

          2

          CD2x,

          CB3x6,

          x2,

          DPBD2CD4,

          CP2,

          CE,

          tanBDE tanBPE3

          3)解:存在這樣的點(diǎn)P

          DCP∽△BCA,得,,

          CPCD,

          BDE是等腰三角形,可分三種情況:

          當(dāng)BDBE時(shí),BDBE,

          CDBCBD6,

          CP33

          當(dāng)BDDE時(shí),此時(shí)點(diǎn)DRtCBE斜邊的中點(diǎn),

          CDBC3,

          CP;

          當(dāng)DEBE時(shí),作EHBC于點(diǎn)H,則HBD的中點(diǎn),

          ABC=∠EHC90°

          EHAB,

          AEACCE3,

          BHDH,

          CD6

          CP

          綜上所述,BDE是等腰三角形,符合條件的CP的長為33

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,AC5,BC12,且∠A90°+B,則點(diǎn)OAB的距離為( 。

          A.B.C.D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,下列結(jié)論:①b24ac,②abc0,③2a+bc0,④a+b+c0.其中正確的是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】前線醫(yī)護(hù)人員和全國人民的共同努力下,疫情得到了有效控制,寧波各大企業(yè)復(fù)工復(fù)產(chǎn)有序進(jìn)行.為了實(shí)現(xiàn)員工一站式返崗,寧波某企業(yè)打算租賃5輛客車前往寧波東站接員工返崗.已知現(xiàn)有AB兩種客車,A型客車的載客量為45/輛,每輛租金為400元;B型客車的載客量為30/輛,每輛租金為280元.設(shè)租用A型客車為x輛,所需費(fèi)用為y元.

          1)求y關(guān)于x的函數(shù)解析式;

          2)若該企業(yè)需要接的員工有205人,請(qǐng)求出租車費(fèi)用最小值,并寫出對(duì)應(yīng)的租車方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】延遲開學(xué)期間,學(xué)校為了全面分析學(xué)生的網(wǎng)課學(xué)習(xí)情況,進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)情況分為三個(gè)層次,A:能主動(dòng)完成老師布置的作業(yè)并合理安排課外時(shí)間自主學(xué)習(xí);B:只完成老師布置的作業(yè);C:不完成老師的作業(yè)),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

          1)此次抽樣調(diào)查中,共調(diào)查了_______名學(xué)生;

          2)將條形圖補(bǔ)充完整;

          3)求出圖2C所占的圓心角的度數(shù);

          4)如果學(xué)校開學(xué)后對(duì)A層次的學(xué)生獎(jiǎng)勵(lì)一次看電影,根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校1500名學(xué)生中大約有多少名學(xué)生能獲得獎(jiǎng)勵(lì)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB90°,AC6,BC8,矩形CDEF的頂點(diǎn)E在邊AB上,D,F兩點(diǎn)分別在邊AC,BC上,且,將矩形CDEF以每秒1個(gè)單位長度的速度沿射線CB方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映St的函數(shù)關(guān)系的圖象為( 。

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)的圖象與軸分別交于兩點(diǎn),與軸交于點(diǎn),.則由拋物線的特征寫出如下結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是()

          A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(38),該二次函數(shù)圖像的對(duì)稱軸與軸的交點(diǎn)為A,M是這個(gè)二次函數(shù)圖像上的點(diǎn),是原點(diǎn)

          1)不等式是否成立?請(qǐng)說明理由;

          2)設(shè)AMO的面積,求滿足的所有點(diǎn)M的坐標(biāo).

          3)將(2)中符號(hào)條件的點(diǎn)M聯(lián)結(jié)起來構(gòu)成怎樣的特殊圖形?寫出兩條這個(gè)特殊圖形的性質(zhì).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),直線與反比例函數(shù)在第一象限的圖象交于點(diǎn)、點(diǎn),其中點(diǎn)的坐標(biāo)為(1,n

          1)求反比例函數(shù)解析式;

          2 連接, 的面積;

          3)根據(jù)圖象,直接寫出當(dāng)時(shí)不等式的解集

          查看答案和解析>>

          同步練習(xí)冊答案