【題目】有關(guān)于,
的方程
.
(1)當(dāng)和
時,所得方程組成的方程組是
,它的解是______;
(2)當(dāng)和
時,所得方程組成的方程組是______它的解是______;
(3)猜想:無論取何值,關(guān)于
,
的方程
一定有一個解是______.
(4)猜想:無論取何值,關(guān)于
,
的方程
一定有一個解是______.
【答案】(1);(2)
,
;(3)
;(4)
.
【解析】
(1)利用加減消元法進(jìn)行求解即可;
(2)將和
分別代入方程
,得打方程組,再利用加減消元法進(jìn)行求解即可;
(3)將含有k的項(xiàng)合并,得到,當(dāng)x=1時,一定有y=1;
(4)同(3),將含有k的項(xiàng)合并,得到,當(dāng)x=3時,一定有y=4.
有關(guān)于,
的方程
.
(1)當(dāng)和
時,所得方程組成的方程組是
,它的解是
;
(2)當(dāng)和
時,所得方程組成的方程組是
,它的解是
;
(3),變形整理得
,
當(dāng)x=1時,y=1,
則方程一定有一個解是
;
(4),變形整理得
,
當(dāng)x=3時,y=4,
則方程一定有一個解是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一股民上星期五買進(jìn)某公司股票股,每股
元,下表為本周內(nèi)每日該股票的漲跌情況(單位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股漲跌 |
星期三收盤時,每股是________元;
本周內(nèi)每股最高價為________元,每股最低價為________元;
已知該股民買進(jìn)股票時付了
‰的手續(xù)費(fèi),賣出時還需付成交額
‰的手續(xù)費(fèi)和
‰的交易銳,如果該股民在星期五收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BEF都是等邊三角形,點(diǎn)D在BC邊上,點(diǎn)F在AB邊上,且∠EAD=60°,連接ED、CF.
(1)求證:△ABE≌△ACD;
(2)求證:四邊形EFCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,聯(lián)結(jié)DF,點(diǎn)M,N分別為DF,EF的中點(diǎn),聯(lián)結(jié)MA,MN.
(1)如圖1,點(diǎn)E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接
寫出結(jié)論;
(2)如圖2,點(diǎn)E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點(diǎn),BE與DF,DC分別交于點(diǎn)G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 240 | 180 |
(1)求a,b的值;
(2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,
,試判斷
與
的大小關(guān)系,并證明你的結(jié)論。
猜想:∠AED=∠C,
理由:∵∠2+∠ADF=180°( ),
∠1+∠2=180°( ),
∴∠1=∠ADF( ),
∴AD∥EF( ),
∴∠3=∠ADE( ),
∵∠3=∠B( ),
∴∠B=∠ADE( ),
∴DE∥BC( ),
∴∠AED=∠C( ),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo);
(2)如圖2,若AE上有一動點(diǎn)P(不與A,E重合)自A點(diǎn)沿AE方向E點(diǎn)勻速運(yùn)動,運(yùn)動的速度為每秒1個單位長度,設(shè)運(yùn)動的時間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時,以A,M,E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)的時刻點(diǎn)M的坐標(biāo)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com