日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在△ABC中,E、D分別為AB、AC上的點(diǎn),且ED∥BC,O為DC中點(diǎn),連結(jié)EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,則有S四邊形EBCD=S△EBF
          精英家教網(wǎng)
          (1)如圖2,在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),當(dāng)直線MN滿足某個(gè)條件時(shí),△MON的面積存在最小值.直接寫出這個(gè)條件:
           

          (2)如圖3,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、(
          9
          2
          9
          2
          )、(4、2),過(guò)點(diǎn)P的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.
          分析:(1)當(dāng)直線旋轉(zhuǎn)到點(diǎn)P是MN的中點(diǎn)時(shí)S△MON最小,過(guò)點(diǎn)M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論;
          (2)①如圖3①過(guò)點(diǎn)P的直線l 與四邊形OABC 的一組對(duì)邊 OC、AB分別交于點(diǎn)M、N,由(1)的結(jié)論知,當(dāng)PM=PN時(shí),△MND的面積最小,此時(shí)四邊形OANM的面積最大,S四邊形OANM=S△OAD-S△MND;
          ②如圖3②,過(guò)點(diǎn)P的直線l與四邊形OABC的另一組對(duì)邊CB、OA分別交M、N,利用S四邊形OCMN=S△OCT-S△MNT,進(jìn)而得出答案.
          解答:精英家教網(wǎng)解:(1)當(dāng)直線MN旋轉(zhuǎn)到點(diǎn)P是線段MN的中點(diǎn)時(shí),△MON的面積最。
          如圖2,
          過(guò)點(diǎn)P的另一條直線EF交OA、OB于點(diǎn)E、F,設(shè)PF<PE,過(guò)點(diǎn)M作MG∥OB交EF于G,
          可以得出當(dāng)P是MN的中點(diǎn)時(shí)S四邊形MOFG=S△MON
          ∵S四邊形MOFG<S△EOF
          ∴S△MON<S△EOF,
          ∴當(dāng)點(diǎn)P是MN的中點(diǎn)時(shí)S△MON最小;
          故答案為:當(dāng)直線MN旋轉(zhuǎn)到點(diǎn)P是線段MN的中點(diǎn)時(shí),△MON的面積最;

          (2)分兩種情況:
          ①如圖3①過(guò)點(diǎn)P的直線l 與四邊形OABC 的一組對(duì)邊 OC、AB分別交于點(diǎn)M、N.
          延長(zhǎng)OC、AB交于點(diǎn)D,
          ∵C(
          9
          2
          ,
          9
          2
          ),
          ∴∠COA=45°,
          ∴AD=6,S△OAD=18.
          由(1)的結(jié)論知,當(dāng)PM=PN時(shí),△MND的面積最小,此時(shí)四邊形OANM的面積最大.
          過(guò)點(diǎn)P、M分別作PP1⊥OA,MM1⊥OA,垂足分別為P1、M1
          由題意得M1P1=P1A=2,從而OM1=MM1=2. 又P(4,2),B(6,3)
          ∴P1A=M1P1=O M1=P1P=2,M1 M=OM=2,則四邊形MM1P1P是正方形.
          ∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8,
          ∴S四邊形OANM=S△OAD-S△MND=18-8=10,
          精英家教網(wǎng)
          ②如圖3②,過(guò)點(diǎn)P的直線l與四邊形OABC的另一組對(duì)邊CB、OA分別交M、N.
          延長(zhǎng)CB交x軸于T點(diǎn),由B、C的坐標(biāo)可得直線BC對(duì)應(yīng)的函數(shù)關(guān)系式為 y=-x+9.
          則T點(diǎn)的坐標(biāo)為(9,0).
          ∴S△OCT=
          1
          2
          ×9×
          9
          2
          =
          81
          4
          ,
          由(1)的結(jié)論知:當(dāng)PM=PN時(shí),△MNT的面積最小,此時(shí)四邊形OCMN的面積最大.
          過(guò)點(diǎn)P、M點(diǎn)分別作PP1⊥OA,MM1⊥OA,垂足為P1,M1
          從而 NP1=P1M1,MM1=2PP1=4.
          ∴點(diǎn)M的橫坐標(biāo)為5,點(diǎn)P(4、2),P1M1=NP1=1,TN=6.
          ∴S△MNT=
          1
          2
          ×6×4=12,S四邊形OCMN=S△OCT-S△MNT=
          81
          4
          -12=
          33
          4
          <10.
          綜上所述:截得四邊形面積的最大值為10.
          點(diǎn)評(píng):此題主要考查了正方形的判定與性質(zhì)以及圖形面積求法等知識(shí),利用分類討論得出四邊形面積最值是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
          (1)求證:AD是圓O的切線;
          (2)當(dāng)∠BAC=90°時(shí),求證:
          PE
          CE
          =
          1
          2
          ;
          (3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:
          (1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱;
          (2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
          (3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
          BC2+CD2
          ;
          (2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
          DE
          BD
          .如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
          1
          3
          1
          3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
          (1)求證:∠AOC=90°+
          12
          ∠ABC;
          (2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案