【題目】如圖,點(diǎn)分別是邊長為2的正六邊形中不相鄰三條邊的中點(diǎn),則
的周長為( )
A.6B.C.
D.9
【答案】D
【解析】
由題意得∠ABM=120°,AB∥MP,從而得∠BMC=∠APD=60°,作AD⊥PM于點(diǎn)D,作BC⊥PM于點(diǎn)C,得四邊形ABCD是矩形,進(jìn)而得PM=CD+ MC+PD=3,即可求解.
∵點(diǎn)分別是邊長為2的正六邊形中不相鄰三條邊的中點(diǎn),
∴∠ABM=120°,AB∥MP,
∴∠BMC=∠APD=60°,
作AD⊥PM于點(diǎn)D,作BC⊥PM于點(diǎn)C,
∴MC=PD=BM=
AB=
×2=
,BC∥AD,
∴四邊形ABCD是平行四邊形,
又∵∠BCD=90°,
∴四邊形ABCD是矩形,
∴CD=AB,
∴PM=CD+ MC+PD=2++
=3,
∴的周長為:9.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)現(xiàn)有在校學(xué)生 1250 人,為了解本校學(xué)生的課余活動(dòng)情況,采取隨機(jī)抽樣的方法從閱讀、運(yùn)動(dòng)、娛樂、其它四個(gè)方面調(diào)查了若干名學(xué)生,并將調(diào)查的結(jié)果繪制了 如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)本次調(diào)査共取了多少名學(xué)生?
(2)通過計(jì)算補(bǔ)全條形圖,并求出扇形統(tǒng)計(jì)圖中閱讀部分圓心角的度數(shù);
(3)請你估計(jì)該中學(xué)在課余時(shí)間參加閱讀和其他活動(dòng)的學(xué)生一共有多少名
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點(diǎn),F在CA延長線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為( 。
A. 16 B. 20 C. 18 D. 22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)、問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.
(2)、探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.
(3)、應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5.點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A 出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長與△ABD底邊上的高相等時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局為了了解該市九年級學(xué)生參加社會實(shí)踐活動(dòng)情況,隨機(jī)抽查了某縣部分九年級學(xué)生第一學(xué)期參加社會實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中提供的信息,回答下列問題:
(1)________%,并寫出該扇形所對圓心角的度數(shù)為________,請補(bǔ)全條形圖;
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)若該縣共有九年級學(xué)生2000人,請你估計(jì)“活動(dòng)時(shí)間不少于7天”的學(xué)生人數(shù)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),四邊形
是正方形,作直線
與正方形
邊所在直線相交于
(1)若直線經(jīng)過點(diǎn)
,求
的值;
(2)若直線平分正方形
的面積,求
的坐標(biāo);
(3)若的外心在其內(nèi)部,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜邊OB=4,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60o,如圖1,連接BC.
(1)ΔOBC的形狀是 ;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點(diǎn)M、N同時(shí)從點(diǎn)O出發(fā),在△OCB邊上運(yùn)動(dòng),M沿O→C→B路徑勻速運(yùn)動(dòng),N沿O→B→C路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止.已知點(diǎn)M的運(yùn)動(dòng)速度為1.5單位/秒,點(diǎn)N的運(yùn)動(dòng)速度為1單位/秒.設(shè)運(yùn)動(dòng)時(shí)間為x秒,△OMN的面積為y,求當(dāng)x為何值時(shí)y取得最大值?最大值為多少?(結(jié)果可保留根號) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請直接寫出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,邊BC長為18,高AD長為12
(1)如圖,矩形EFCH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K,求的值;
(2)設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com