日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,如圖,垂直,AB=6Δ是等邊三角形,點(diǎn)在射線上運(yùn)動(dòng),以為邊向右上方作等邊Δ,射線與射線交于點(diǎn).

          1)如圖1,當(dāng)點(diǎn)運(yùn)動(dòng)到與點(diǎn)成一條直線時(shí), (填長度),∠ 度.

          2)在圖2中,①求證:∠

          ②隨著點(diǎn)的運(yùn)動(dòng),∠的度數(shù)是否發(fā)生改變?若不變,求出這個(gè)角的度數(shù);若改變,說明理由.

          【答案】112,60;(2)①證明見詳解;②∠QFC的度數(shù)不變,∠QFC=60°;理由見詳解.

          【解析】

          1)如圖1,根據(jù)題意,由等邊三角形的性質(zhì)得到PQ=AP,∠BAP=ABE=60°,根據(jù)三角形的內(nèi)角和得到∠APB=EBP=30°,根據(jù)直角三角形的性質(zhì)得到AP=2AB=12,BE=PE,證得QFAP,即可得到結(jié)論;

          2)①根據(jù)等邊三角形的性質(zhì)可以得出AB=AE,AP=AQ,由等式的性質(zhì)就可以得出∠BAP=EAQ,就可以得出結(jié)論;

          ②根據(jù)三角形的外角等于不相鄰的兩內(nèi)角的和,證明∠BAP=EAQ,進(jìn)而得到ABP≌△AEQ,證得∠AEQ=ABP=90°,則∠BEF=180°-AEQ-AEB=180°-90°-60°=30°,∠QFC=EBF+BEF

          解:(1)如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到與A、E成一直線時(shí),

          ∵△ABE△APQ是等邊三角形,

          PQ=AP,∠BAP=ABE=60°,

          ∵∠ABP=90°,

          ∴∠APB=EBP=30°

          AP=2AB=12,BE=PE

          PQ=AP=12;

          PE=AE,

          QFAP

          ∴∠QFC=60°,

          故答案為:12,60

          2)①如圖2,

          ∵△ABE△APQ是等邊三角形,

          AB=AE,AP=AQ,∠BAE=PAQ=ABE=AEB=60°,

          ∴∠BAE-PAE=PAQ-PAE

          ∴∠BAP=EAQ,

          △ABP△AEQ中,

          ,

          ∴△ABP≌△AEQSAS),

          ∴∠AEQ=ABC=90°

          ②∠QFC的度數(shù)不變,∠QFC=60°

          由(2)①得∴△ABP≌△AEQSAS

          ∴∠AEQ=ABP=90°

          ∴∠BEF=180°-AEQ-AEB=180°-90°-60°=30°,

          ∴∠QFC=EBF+BEF=30°+30°=60°

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形對(duì)角線、的交點(diǎn)是四邊形對(duì)角線的中點(diǎn),四個(gè)頂點(diǎn)、分別在四邊形的邊、、、上.

          求證:四邊形是平行四邊形;

          如圖若四邊形是矩形,當(dāng)重合時(shí),已知,且菱形的面積是,求矩形的長與寬.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線分別與軸,軸交于,兩點(diǎn),與雙曲線交于,兩點(diǎn),若,則的值是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠AOB=30°,點(diǎn)P位于∠AOB內(nèi),OP=3,點(diǎn)M,N分別是射線OAOB邊上的動(dòng)點(diǎn),當(dāng)PMN的周長最小時(shí),則∠MPN的度數(shù)為__________°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Δ中,∠=,在同一平面內(nèi),現(xiàn)將Δ圍繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在點(diǎn),點(diǎn)落在點(diǎn),如果那么∠=______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣x2+2x+5上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣x+3于點(diǎn)Q,則當(dāng)PQBQ時(shí),a的值是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖①,在△ABC中,BC=AC,在△CDE中,CE=CD,現(xiàn)把兩個(gè)三角形的C點(diǎn)重合,且使∠BCA=ECD,連接BE、AD.

          (1)求證:BE=AD

          (2)若將△ECD繞點(diǎn)C旋轉(zhuǎn)至圖②、③所示的情況時(shí),其余條件不變,BEAD還相等么?若相等,請(qǐng)給與證明;若不相等,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,,,點(diǎn)D在邊BCBC不重合,四邊形ADEF為正方形,過點(diǎn)F,CA的延長線于點(diǎn)G,連接FB,DE于點(diǎn)Q,給出以下結(jié)論:;2;,其中正確的結(jié)論的個(gè)數(shù)是()

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,ACB=90°,D為AB上任一點(diǎn),過D作AB的垂線,分別交邊AC、BC的延長線于EF兩點(diǎn),BACBFD的平分線交于點(diǎn)I,AI交DF于點(diǎn)M,F(xiàn)I交AC于點(diǎn)N,連接BI下列結(jié)論:

          ①∠BAC=BFD;

          ②∠ENI=EMI;

          AIFI;

          ④∠ABI=FBI;

          其中正確結(jié)論的個(gè)數(shù)是( )

          A1個(gè) B2個(gè) C3個(gè) D4個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案