日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為⊙O的直徑,C、D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC、OC相交于 點(diǎn)E、F.若∠CBD=36°,則下列結(jié)論中不正確的是

          A. ∠AOC=72° B. ∠AEC=72° C. AF=DF D. BD=20F

          【答案】B

          【解析】

          根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)可判斷A正確,再根據(jù)圓周角定理和三角形內(nèi)角和定理及對(duì)頂角相等可知AEC=54°,然后根據(jù)中位線的性質(zhì)可知C、D正確.

          OCBD,

          ∠OCB=CBD=36°.

          OB=OC,

          ∠OBC=∠OCB=36°,

          AOC=72°.

          A正確.

          AB為直徑,

          ADB=90°.

          AEC=BED=54°.

          B錯(cuò)誤.

          OCBD,且OA=OB

          OF△ABD的中位線,

          AF=DF,BD=20F.

          C、D正確.

          故選B.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,過(guò)邊長(zhǎng)為3的等邊三角形ABC的邊AB上一點(diǎn)P,作PEACE,QBC延長(zhǎng)線上一點(diǎn),問(wèn):若PACQ時(shí),連接PQAC邊于D,求DE的長(zhǎng)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)如圖1,在△ABC中,BD、CD分別是△ABC兩個(gè)內(nèi)角∠ABC、∠ACB的平分線.

          若∠A70°,求∠BDC的度數(shù).

          Aα,請(qǐng)用含有α的代數(shù)式表示∠BDC的度數(shù).(直接寫出答案)

          2)如圖2,BE、CE分別是△ABC兩個(gè)外角∠MBC、∠NCB的平分線.若∠Aα,請(qǐng)用含有α的代數(shù)式表示∠BEC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】陳老師為了解七班同學(xué)對(duì)新聞、體育、娛樂(lè)、動(dòng)畫四類電視節(jié)目的喜歡情況,調(diào)查了全班名同學(xué)(每名同學(xué)必選且只能選擇這四類節(jié)目中的一類),并將調(diào)查結(jié)果繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)兩圖提供的信息,解答下列問(wèn)題:

          求喜歡娛樂(lè)節(jié)目的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

          求扇形統(tǒng)計(jì)圖中喜歡體育節(jié)目的人數(shù)占全班人數(shù)的百分比和圓心角的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖有一張簡(jiǎn)易的活動(dòng)小餐桌,現(xiàn)測(cè)得OA=OB=30cm,OC=OD=50cm,桌面離地面的高度為40cm,則兩條桌腿的張角COD的度數(shù)為______度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我們知道,任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無(wú)理數(shù),那么m=0n=0.

          1)如果,其中ab為有理數(shù),那么a= ,b= .

          2)如果,其中a、b為有理數(shù),求a+2b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀與理解:

          如圖1,直線,點(diǎn)Pa,b之間,M,N分別為a,b上的點(diǎn),PM,N三點(diǎn)不在同一直線上,PMa的央角為,PNb的夾角為,則

          理由如下:

          過(guò)P點(diǎn)作直線,因?yàn)?/span>,所以(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).所以.(兩直線平行,內(nèi)錯(cuò)角相等),所以,即

          計(jì)算與說(shuō)明:

          已知:如圖2ABCD交于點(diǎn)O

          1.,求證:;

          22.如圖3,已知AE平分,DE平分

          ①若,,請(qǐng)你求出的度數(shù);

          ②請(qǐng)問(wèn):圖3中,有怎樣的數(shù)量關(guān)系?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).

          (1)請(qǐng)直接寫出A,B,C三點(diǎn)的坐標(biāo),并求出過(guò)這三點(diǎn)的拋物線解析式;

          (2)設(shè)(1)中拋物線解析式的頂點(diǎn)為E,

          求證:直線EA與⊙M相切;

          (3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?

          如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 ABCD,點(diǎn) MN 分別是 AB、CD 上兩點(diǎn),點(diǎn) G ABCD 之間,連接 MGNG

          1)如圖 1,若 GMGN,求AMG+CNG 的度數(shù);

          2)如圖 2,若點(diǎn) P CD 下方一點(diǎn),MG 平分BMP,ND 平分GNP,已知BMG40°,求MGN+MPN的度數(shù);

          3)如圖 3,若點(diǎn) E AB 上方一點(diǎn),連接 EM、EN,且 GM 的延長(zhǎng)線 MF 平分AME,NE 平分CNG2MEN+MGN102°,求AME 的度數(shù).(直接寫出結(jié)果)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案