日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如右圖,在等腰梯形ABCD中,AD∥BC,AD=AB.過A作AF⊥BD,交BC于G,延長BC至E,使CE=CD.
          小題1:(1)請指出四邊形ACED的形狀,并證明;
          小題2:(2)如果BD=8,AG=6,求△BDE的面積.(10分)

          小題1:(1)四邊形ACED為平行四邊形.(1分)
          在等腰梯形ABCD中,AD="AB=CD=CE," AD//CE(3分),
          ∴四邊形ACED為平行四邊形.
          小題2:(2)∵AB="AD" ,  ∴∠ADB=∠ABD.
          ∵AD//BC, ∴∠ADB=∠DBC.
          ∴∠ABD=∠DBC(4分), 而BF=BF,∠AFB=∠GFB=900.
          ∴△AFB≌△GFB.
          ∴AF=GF=3.(5分)
          又∵AG垂直平分BD, ∴BF=4.
          在Rt△AFB中,得AB=5.(6分)
          由(1)可得AC//DE.所以∠E=∠ACB.
          在等腰梯形ABCD中,易得∠ACB=∠DBC.(7分)
          ∴∠E=∠DBC=∠ABD.
          ∴△ABD∽△DBE . (8分)
          ∴SBDE / SABD=BD2/AB2,而SABD=12.(9分)
          ∴SBDE = .(10分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,DEBCBA的延長線于D,交CA的延長線于E,AD=4,DB=12,DE=3.
           
          BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在△ABC中,點D在BC上,在下列四個條件:①∠BAD=∠C;②∠ADC+∠BAC=180°; ③BA2=BD·BC;④中能使△BDA∽△BAC的條件有 ……………… ………… …………… …【   】 
          A.1個B.2個C.3個D.4個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在矩形ABCD中,AB =6,AD =11.直角尺的直角頂點PAD上滑動時(點PA,D不重合),一直角邊始終經(jīng)過點C,另一直角邊與AB交于點E
          (1)△CDP與△PAE相似嗎?如果相似,請寫出證明過程;
          (2)當(dāng)∠PCD =30°時,求AE的長;
          (3)是否存在這樣的點P,使△CDP的周長等于△PAE周長的2倍?若存在,求DP的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)
          如圖,的頂點A、B在二次函數(shù)的圖像上,又點AB[分別在軸和軸上,ABO

          小題1:(1)求此二次函數(shù)的解析式;(4分)
          小題2:

           

           
          (2)過點交上述函數(shù)圖像于點

          在上述函數(shù)圖像上,當(dāng)相似時,求點的坐標(biāo).(8分)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          2011年11月“天宮一號”和“神州八號”的成功對接是我國航天事業(yè)又一巨大成就.在一比例尺是的衛(wèi)星地圖上,測得上海和南京的距離大約是厘米.那么上海和南京的實際距離大約是     ▲     千米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          ( 10分)如圖,是⊙O的直徑,延長線上的任意一點,為半圓的中點,切⊙O于點,連結(jié)于點

            求證:小題1:(1)
          小題2:(2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB為直徑的OM交OC于點D、E,連結(jié)AD、BD.現(xiàn)以O(shè)為坐標(biāo)原點,OA、OC所在直線為x軸、y軸建立如圖所示直角坐標(biāo)系,若拋物線yax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.

          小題1:(1)寫出頂點B的坐標(biāo) ▲ (用a的代數(shù)式表示);
          小題2:(2)求拋物線的解析式:
          小題3:(3)在x軸下方的拋物線上是否存在這樣的點P:過點P作PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標(biāo):若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,在△ABC中,∠ACB=90°,AC=3,BC=4,將△ABC繞頂點C順時針旋轉(zhuǎn)30°,得到△ABC.聯(lián)結(jié)AA、BB,設(shè)△ACA′和△BCB′的面積分別為S△ACA′ S△BCB′

          小題1:(1)直接寫出S△ACA′ S△BCB′ 的值                  ;
          小題2:(2)如圖2,當(dāng)旋轉(zhuǎn)角為(0°<<180°)時,S△ACA′ S△BCB′ 的比值是否發(fā)生變化,若不變請證明;若改變,寫出變化后的比值(可用含的代數(shù)式表示).

          查看答案和解析>>

          同步練習(xí)冊答案