日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y= x2交于點(diǎn)Q,則圖中陰影部分的面積為

          【答案】
          【解析】過點(diǎn)P作PM⊥y軸于點(diǎn)M,

          ∵拋物線平移后經(jīng)過原點(diǎn)O和點(diǎn)A(﹣6,0),

          ∴平移后的拋物線對稱軸為x=﹣3,

          得出二次函數(shù)解析式為:y= (x+3)2+h,

          將(﹣6,0)代入得出:

          0= (﹣6+3)2+h,

          解得:h=﹣ ,

          ∴點(diǎn)P的坐標(biāo)是(﹣3,﹣ ),

          根據(jù)拋物線的對稱性可知,陰影部分的面積等于矩形NPMO的面積,

          ∴S=|﹣3|×|﹣ |=

          所以答案是:

          【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)圖象的平移,需要了解平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對x軸左加右減;對y軸上加下減才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在平面直角坐標(biāo)系中,有若干個(gè)點(diǎn)按如下規(guī)律排列:(11),(2,1),(22),(3,1),(3,2),(3,3), 則第 200 個(gè)點(diǎn)的橫坐標(biāo)為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長MN交BC于點(diǎn)G.有如下結(jié)論:
          ①∠ABN=60°;②AM=1;③QN= ;④△BMG是等邊三角形;⑤P為線段BM上一動點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是
          其中正確結(jié)論的序號是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為創(chuàng)建美麗鄉(xiāng)村,某村計(jì)劃購買甲、乙兩種樹苗共400棵,對本村道路進(jìn)行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.

          若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?

          若購買甲種樹苗的金額不少于購買乙種樹苗的金額,則至少應(yīng)購買甲種樹苗多少棵?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
          則正確的結(jié)論是( )

          A.(1)(2)(3)(4)
          B.(2)(4)(5)
          C.(2)(3)(4)
          D.(1)(4)(5)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

          (1)求證:BO=DO;

          (2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時(shí),求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,ABBC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CDE、F;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點(diǎn)G;作射線AGCD于點(diǎn)H.則下列結(jié)論:①AG平分∠DABCH=DH,③△ADH是等腰三角形,④SADH=S四邊形ABCH

          其中正確的有( 。

          A. ①②③ B. ①③④ C. ②④ D. ①③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在 上的點(diǎn)D處,折痕交OA于點(diǎn)C,則陰影部分的面積是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,SABC=8,點(diǎn)MP,N分別是邊ABBC,AC上任意一點(diǎn),則:

          1AB的長為____________

          2PM+PN的最小值為____________

          查看答案和解析>>

          同步練習(xí)冊答案