【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機(jī)摸出一個小球,另一人再從袋中剩下的3個小球中隨機(jī)摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認(rèn)為這個游戲公平嗎?請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面圖形,解答問題:
(1)在△ABC中,AB=AC,∠BAC=100°,DE、FG分別是邊AB、AC的垂直平分線(如圖1),求∠DAG的度數(shù)?
(2)在(1)中,若去掉“AB=AC”的條件,其余條件不變(如圖2),還能求出∠DAG的度數(shù)嗎?若能,請求出∠DAG的度數(shù);若不能,請說明理由;
(3)在(圖2)的情況下試探索△ADG的周長與BC長的關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,過B作BE⊥AD于E,過E作EF∥AC交AB于F,則下列結(jié)論:(1)AF=FE,(2)FE=FB,(3)FE=BE,(4)AF=BF,(5)BE =BF,成立的有( )
A.1 個B.2 個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線AB的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并回答問題:
我們知道,乘法公式可以用平面幾何圖形的面積來表示,實(shí)際上還有一些代數(shù)恒等式也可以用這種形式表示,如:,就可以用圖1或圖2等圖形的面積表示.
(1)請寫出圖3所表示的代數(shù)恒等式: ;
(2)試畫一個幾何圖形,使它的面積表示:;
(3)請仿照上述方法另寫一個含有,
的代數(shù)恒等式,并畫出與它對應(yīng)的幾何圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形中,
,
,已知
,
,動點(diǎn)
從
點(diǎn)出發(fā),沿線段
向點(diǎn)
作勻速運(yùn)動:動點(diǎn)
從點(diǎn)
出發(fā),沿線段
向點(diǎn)
作勻速運(yùn)動.過
點(diǎn)垂直于
的射線交
于點(diǎn)
,交
于點(diǎn)
.
、
兩點(diǎn)同時出發(fā),速度都為每秒
個單位長度.當(dāng)
點(diǎn)運(yùn)動到
點(diǎn),
、
兩點(diǎn)同時停止運(yùn)動.設(shè)點(diǎn)
運(yùn)動的時問為
秒.
________,
________.(用
的代數(shù)式表示);
當(dāng)
為何值時,四邊形
構(gòu)成平行四邊形?
若
為等腰三角形,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動,物體甲按逆時針方向以1個單位/秒勻速運(yùn)動,物體乙按順時針方向以2個單位/秒勻速運(yùn)動,則兩個物體運(yùn)動后的第2012次相遇地點(diǎn)的坐標(biāo)是【 】
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
經(jīng)過點(diǎn)
(0,
),
(3,4).
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為
,點(diǎn)
是拋物線對稱軸上一動點(diǎn),記拋物線在
,
之間的部分為圖象
(包含
,
兩點(diǎn)).若直線
與圖象
有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)
縱坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有、
兩個不透明的布袋,
袋中有三個相同的小球,分別標(biāo)有數(shù)字
,
和
,
袋中有兩個相同的小球,分別標(biāo)有數(shù)字
和
,小林從
袋中隨機(jī)取出一個小球,記錄標(biāo)有的數(shù)字為
,再從
袋中隨機(jī)取出一個小球,記錄標(biāo)有的數(shù)字為
,這樣確定了點(diǎn)
的坐標(biāo)
用畫樹狀圖或列表的形式,求點(diǎn)
在
軸上的概率;
在平面直角坐標(biāo)系
中,
的半徑是
,求過點(diǎn)
能作
切線的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com