日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系。

          (1)小王同學(xué)探究此問題的方法是:延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,即可得出BE,EF,F(xiàn)D之間的數(shù)量關(guān)系,他的結(jié)論應(yīng)是____________。

          象上面這樣有公共頂點,銳角等于較大角的一半,且組成這個較大角的兩邊相等的幾何模型稱為半角模型。

          (2)拓展 如圖②,若在四邊形ABCD,,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點,且∠EAF=∠BAD,則BE,EF,F(xiàn)D之間的數(shù)量關(guān)系是________________。

          請證明你的結(jié)論。

          (3)實際應(yīng)用 如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西35°的A處,艦艇乙在指揮中心南偏東75°的B,,且兩艦艇到指揮中心的距離相等接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里小時的速度前進,1.2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為65°,試求此時兩艦艇之間的距離是_____________海里 (直接寫出答案)。

          【答案】(1)EF=BE+FD ;(2) EF=BE+FD;(3)168海里

          【解析】

          (1)延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;

          (2)延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;

          (3)連接EF,延長AE、BF相交于點C,然后與(2)同理可證.

          (1)EF=BE+DF,證明如下:

          在△ABE和△ADG中,

          ,

          ∴△ABE≌△ADG(SAS),

          ∴AE=AG,∠BAE=∠DAG,

          ∵∠EAF=∠BAD,

          ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,

          ∴∠EAF=∠GAF,

          在△AEF和△GAF中,

          ,

          ∴△AEF≌△AGF(SAS),

          ∴EF=FG,

          ∵FG=DG+DF=BE+DF,

          ∴EF=BE+DF;

          故答案為 EF=BE+DF.

          (2)結(jié)論EF=BE+DF仍然成立;

          理由:延長FD到點G.使DG=BE.連結(jié)AG,如圖②,

          在△ABE和△ADG中,

          ,

          ∴△ABE≌△ADG(SAS),

          ∴AE=AG,∠BAE=∠DAG,

          ∵∠EAF=∠BAD,

          ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,

          ∴∠EAF=∠GAF,

          在△AEF和△GAF中,

          ∴△AEF≌△AGF(SAS),

          ∴EF=FG,

          ∵FG=DG+DF=BE+DF,

          ∴EF=BE+DF;

          (3)如圖③,連接EF,延長AE、BF相交于點C,

          ∵∠AOB=35°+90°+(90°﹣75°)=130°,∠EOF=65°,

          ∴∠EOF=∠AOB,

          又∵OA=OB,∠OAC+∠OBC=(90°﹣35°)+(75°+50°)=180°,

          ∴符合探索延伸中的條件,

          ∴結(jié)論EF=AE+BF成立,

          即EF=1.2×(60+80)=168海里.

          答:此時兩艦艇之間的距離是168海里.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉(zhuǎn),若點B,P在直線a的異側(cè),BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

          (1)延長MP交CN于點E(如圖2).

          ①求證:△BPM≌△CPE;
          ②求證:PM=PN;
          (2)若直線a繞點A旋轉(zhuǎn)到圖3的位置時,點B,P在直線a的同側(cè),其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

          (3)若直線a繞點A旋轉(zhuǎn)到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在⊙O中,半徑OA垂直于弦BC,垂足為E,點D在CA的延長線上,若∠DAB+
          ∠AOB=60°

          (1)求∠AOB的度數(shù);
          (2)若AE=1,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

          (1)求出空地ABCD的面積.

          (2)若每種植1平方米草皮需要200元,問總共需投入多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在△ABC中,AD是∠BAC的平分線,DE⊥ACE,DF⊥ABF,且FB=CE,則下列結(jié)論:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC。

          其中正確的有___________ (填序號)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一次函數(shù)y=kx+b圖象經(jīng)過點(1,3)和(4,6)

          ①試求

          ②畫出這個一次函數(shù)圖象;

          ③這個一次函數(shù)與y軸交點坐標(biāo)是(   

          當(dāng)x 時,y<0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)如表回答下列問題:

          x

          16.2

          16.3

          16.4

          16.5

          16.6

          16.7

          16.8

          16.9

          17.0

          x2

          262.44

          265.69

          268.96

          272.25

          275.56

          278.89

          282.24

          285.61

          289

          (1)275.56的平方根是______ ;

          (2)= ______ ;

          (3)查看上表, <<

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,C點坐標(biāo)為(﹣3,0),A點坐標(biāo)為(﹣8,4),則B點的坐標(biāo)是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知A(2 ,2)、B(2 ,1),將△AOB繞著點O逆時針旋轉(zhuǎn),使點A旋轉(zhuǎn)到點A′(﹣2 ,2 )的位置,則圖中陰影部分的面積為

          查看答案和解析>>

          同步練習(xí)冊答案