日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABC中,AB=ACDBC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等的三角形的對數(shù)是______

          【答案】4

          【解析】

          根據(jù)已知條件“AB=AC,DBC中點(diǎn)”,得出△ABD≌△ACD,然后再由AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,推出△AOE≌△EOC,從而根據(jù)“SSS”或“SAS”找到更多的全等三角形,要由易到難,不重不漏.

          解:∵AB=AC,DBC中點(diǎn),

          ∴CD=BD,∠BDO=∠CDO=90°,

          在△ABD和△ACD中,

          ∴△ABD≌△ACD;

          ∵EF垂直平分AC,

          ∴OA=OC,AE=CE,

          在△AOE和△COE中,

          ∴△AOE≌△COE;

          在△BOD和△COD中,

          ∴△BOD≌△COD;

          在△AOC和△AOB中,

          ∴△AOC≌△AOB;

          故答案是:4.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是我國幾家銀行的標(biāo)志,其中即是軸對稱圖形又是中心對稱圖形的有( )
          A.2個(gè)
          B.3個(gè)
          C.4個(gè)
          D.5個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,1),取一點(diǎn)B(b,0),連接AB,做線段AB的垂直平分線l1 , 過點(diǎn)B作x軸的垂線l2 , 記l1 , l2的交點(diǎn)為P.

          (1)當(dāng)b=3時(shí),在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡);
          (2)小慧多次取不同數(shù)值b,得出相應(yīng)的點(diǎn)P,并把這些點(diǎn)用平滑的曲線連接起來發(fā)現(xiàn):這些點(diǎn)P竟然在一條曲線L上!
          ①設(shè)點(diǎn)P的坐標(biāo)為(x,y),試求y與x之間的關(guān)系式,并指出曲線L是哪種曲線;
          ②設(shè)點(diǎn)P到x軸,y軸的距離分別是d1 , d2 , 求d1+d2的范圍,當(dāng)d1+d2=8時(shí),求點(diǎn)P的坐標(biāo);
          ③將曲線L在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個(gè)交點(diǎn),直接寫出k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、EF分別在BC、ABAC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

          (1)當(dāng)AE=8時(shí),求EF的長;

          (2)設(shè)AEx,矩形EFPQ的面積為y

          yx的函數(shù)關(guān)系式;

          當(dāng)x為何值時(shí),y有最大值,最大值是多少?

          (3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C、D是坐標(biāo)軸上的點(diǎn)且點(diǎn)C坐標(biāo)是(0,﹣1),AB=5,點(diǎn)(a,b)在如圖所示的陰影部分內(nèi)部(不包括邊界),已知OA=OD=4,則a的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)為:A(1,2),B(2, 一1), C (4, 3).

          (1)將△ABC向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得△A'B'C'.畫出△A'B'C',并寫出△A'B'C'的頂點(diǎn)坐標(biāo);

          (2)求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開機(jī)后,飲水機(jī)自動(dòng)開始加熱[此過程中水溫y(℃)與開機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
          (1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
          (2)求圖中t的值;
          (3)若小明在通電開機(jī)后即外出散步,請你預(yù)測小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5).線段CM的長度記作y , 線段BP的長度記作y , y和y關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

          (1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒cm,當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是;
          (2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
          (3)是否存在某一時(shí)刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說明理由;
          (4)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

          ①EFAC;四邊形ADFE為菱形;③AD=4AG;④FH=BD

          其中正確結(jié)論的為______(請將所有正確的序號都填上).

          查看答案和解析>>

          同步練習(xí)冊答案