科目: 來源: 題型:
【題目】如圖,點0 為Rt△ABC斜邊AB上的一點,以OA 為半徑的☉O與BC切于點D,與AC 交于點E,連接AD.
(1) 求證: AD平分∠BAC;
(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】南潯區(qū)某科技開發(fā)公司研制出一種新型的產品,每件產品的成本為1200元,銷售單價定為1700元,在該產品的試銷期間,為了促銷,鼓勵商家購買該新型產品,公司決定商家一次購買這種新型產品不超過10件時,每件按1700元銷售;若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低10元,但銷售單價均不低于1400元.
(1)若顧客一次購買這種產品6件時,則公司所獲得的利潤為 元?
(2)顧客一次性購買該產品至少多少件時,其銷售單價為1400元;
(3)經過市場調查,該公司的銷售人員發(fā)現(xiàn):當一次性購買產品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.設一次性購買該產品x件,公司所獲得的利潤為y元
①請你通過分析求出此時y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍;
②為使顧客一次性購買的數(shù)量越多,公司所獲得的利潤越大,公司應將最低銷售單價調整為 元?(其它銷售條件不變)
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)嘗試探究
如圖1,等腰Rt△ABC的兩個頂點B,C在直線MN上,點D是直線MN上一個動點(點D在點C的右邊),BC=3,BD=m,在△ABC同側作等腰Rt△ADE,∠ABC=∠ADE=90°,EF⊥ MN于點F,連結CE.
①求DF的長;
②在判斷AC⊥CE是否成立時,小明同學發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:先證CF=EF,求出∠ECF=45°,從而證得結論成立.
思路二:先求DF,EF的長,再求CF的長,然后證AC2+CE2=AE2,從而證得結論成立.
請你任選一種思路,完整地書寫本小題的證明過程.(如用兩種方法作答,則以第一種方法評分)
(2)拓展探究
將(1)中的兩個等腰直角三角形都改為有一個角為的直角三角形,如圖2, ∠ABC=∠ADE=90°,∠BAC=∠DAE=30°,BC=3,BD=m,當4≤m≤6時,求CE長的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線y=x2-bx+5與x軸交于A,B兩點,與y軸交于點C,已知點A的坐標是(1,0),點A在點B的左邊.
(1)求拋物線的函數(shù)解析式;
(2)如圖1,點E為BC的中點,將△BOC沿CE方向進行平移,平移后得到的三角形為△HGF,當點F與點E重合時停止運動.設平移的距離CF=m,記△HGF在直線l:y=x-3下方的圖形面積為S,求S關于m的函數(shù)解析式;
(3)如圖2,連結AC和BC,點M,E分別是AC, BC的中點.點P是線段ME上任一點,點Q是線段AB上任一點.現(xiàn)進行如下兩步操作:
第一步:沿三角形CAB的中位線ME將紙片剪成兩部分,并在線段ME上任意取一點P,線段AB上任意取一點Q,沿PQ將四邊形紙片MABE剪成兩部分;
第二步:將PQ左側紙片繞M點按順時針方向旋轉180°,使線段MA與MC重合,將PQ右側紙片繞E點按逆時針方向旋轉180°,使線段EC與EB重合,拼成一個與三角形紙片ABC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無縫且不重疊)
求拼成的這個四邊形紙片的周長的最小值與最大值的和.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0),自變量x與函數(shù)y的對應值如下表:
下列說法正確的是( )
A. 拋物線的開口向下
B. 當x>-3時,y隨x的增大而增大
C. 二次函數(shù)的最小值是-2
D. 拋物線的對稱軸是直線x=-2.5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,平面內有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有,則稱點P為關于點A的勾股點.矩形ABCD中,AB=5,BC=6,E是矩形ABCD內一點,且點C是關于點A的勾股點,若是△ADE等腰三角形,求AE的長為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,拋物線y=與y軸交于點A,頂點為B,直線l:y=-
x+b經過點A,與拋物線的對稱軸交于點C,點P是對稱軸上的一個動點,若AP+
PC的值最小,則點P的坐標為( )
A. (3,1)
B. (3,)
C. (3,)
D. (3,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC=90°,AO是△ABC的角平分線,以O為圓心,OB為半徑作圓交BC于點D,
(1)求證:直線AC是⊙O的切線;
(2)在圖2中,設AC與⊙O相切于點E,連結BE,如果AB=4,tan∠CBE=.
①求BE的長;②求EC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (n≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點B 坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=
.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校八年級甲、乙兩班各有學生50人,為了了解這兩個班學生身體素質情況,進行了抽樣調查,過程如下,請補充完整.
(1)收集數(shù)據:從甲、乙兩個班各隨機抽取10名學生進行身體素質測試,測試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據:按如下分數(shù)段整理、描述這兩組樣本數(shù)據:
成績x 人數(shù) 班級 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=______,n=______.
(3)分析數(shù)據:
①兩組樣本數(shù)據的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲班 | 72 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=______,y=______.
②若規(guī)定測試成績在80分(含80分)以上的學生身體素質為優(yōu)秀,請估計乙班50名學生中身體素質為優(yōu)秀的學生有______人.
③現(xiàn)從甲班指定的2名學生(1男1女),乙班指定的3名學生(2男1女)中分別抽取1名學生去參加上級部門組織的身體素質測試,用樹狀圖和列表法求抽到的2名同學是1男1女的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com