科目: 來源: 題型:
【題目】已知關(guān)于x的方程(x+1)(x﹣3)+m=0(m<0)的兩根為a和b,且a<b,用“<”連接﹣1、3、a、b的大小關(guān)系為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)x1、x2是關(guān)于x的方程2x2﹣4mx+2m2+3m+2=0的兩個實根,當(dāng)m=_____時,x12+x22有最小值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下
列結(jié)論:①,②
,③
,④
,⑤
中正確的是( )
A. ②④⑤ B. ①②④ C. ①③④ D. ①③④⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為C(0,8),并且經(jīng)過A(8,0),點(diǎn)P是拋物線上點(diǎn)A,C間的一個動點(diǎn)(含端點(diǎn)),過點(diǎn)P作直線y=8的垂線,垂足為點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)猜想并探究:對于任意一點(diǎn)P,PD與PF的差是否為固定值?如果是,請求出此定值;如果不是,請說明理由;
(3)求:①當(dāng)△PDE的周長最小時的點(diǎn)P坐標(biāo);②使△PDE的面積為整數(shù)的點(diǎn)P的個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,∠BOC=α.將△BOC繞點(diǎn)C按順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)判斷△COD的形狀,并加以說明理由.
(2)若AD=1,OC=,OA=
時,求α的度數(shù).
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,□ABCD中,AB⊥AC,AB=1,BC=.對角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F.
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,請直接寫出此時AC繞點(diǎn)O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】每個小正方形都是邊長為1個單位長度的小正方形,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫出菱形OABC關(guān)于原點(diǎn)O的中心對稱圖形OA1B1C1,并直接寫出點(diǎn)B1的坐標(biāo);
(2)將菱形OABO繞原點(diǎn)O順時針旋轉(zhuǎn)90°,得到菱形OA2B2C2,請畫出菱形OA2B2C2并求出點(diǎn)B旋轉(zhuǎn)到B2的路徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+b的圖象與直線y=x+2相交于點(diǎn)A(1,m),點(diǎn)B(n,0).
(1)求二次函數(shù)的解析式,并寫出該拋物線的對稱軸和頂點(diǎn)坐標(biāo);
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線的圖象;
x | …… |
|
|
|
|
| …… |
y | …… |
|
|
|
|
| …… |
(3)畫出這兩個函數(shù)的圖象,并結(jié)合圖象直接寫出ax2+b>x+2時x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分8分)
為了加強(qiáng)學(xué)生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動.學(xué)校隨機(jī)抽取了部分學(xué)生,對他們一周的課外閱讀時間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的 ,
;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)學(xué)校將每周課外閱讀時間在小時以上的學(xué)生評為“閱讀之星”,請你估計該校
名學(xué)生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠BAD=120°,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AC上的一動點(diǎn),則EF+BF的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com