日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且橢圓過點(diǎn).

          (1)求橢圓的方程;

          (2)設(shè)橢圓左、右焦點(diǎn)分別為,過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.

          【答案】(;()(1;(2, .

          【解析】試題分析:(1)本問主要考查待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程,首先設(shè)橢圓方程為,然后根據(jù)條件列方程組,求解后即得到橢圓標(biāo)準(zhǔn)方程;(2)本問主要考查直線與橢圓的綜合問題,分析可知,內(nèi)切圓面積最大時(shí)即為內(nèi)切圓半徑最大, 的面積可以表示為,由橢圓定義可知的周長為定值,這樣的面積轉(zhuǎn)化為,然后再根據(jù)直線與橢圓的位置關(guān)系, 的面積表示為,這樣可以聯(lián)立直線方程與橢圓方程,消去未知數(shù),得到關(guān)于的一元二次方程,根據(jù)韋達(dá)定理,表示出,最后轉(zhuǎn)化為關(guān)于的函數(shù),即可求出最值.

          試題解析:(Ⅰ)由題意可設(shè)橢圓方程為

          ,

          解得: 橢圓方程為,

          (Ⅱ)設(shè),不妨,設(shè)的內(nèi)切圓的半徑

          的周長為因此最大,

          就最大,

          由題知,直線 的斜率不為零,可設(shè)直線的方程為

          .

          ,

          ,可知,則 ,

          ,則,當(dāng)時(shí), , 上單調(diào)遞增,有,

          即當(dāng)時(shí), ,這時(shí)所求內(nèi)切圓面積的最大值為

          故直線內(nèi)切圓面積的最大值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一次猜獎(jiǎng)游戲中,1,2,3,4四扇門里擺放了 , 四件獎(jiǎng)品(每扇門里僅放一件).甲同學(xué)說:1號門里是,3號門里是;乙同學(xué)說:2號門里是,3號門里是;丙同學(xué)說:4號門里是,2號門里是;丁同學(xué)說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)求函數(shù)的極值;

          (Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)使得不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的定義域?yàn)?/span>,部分對應(yīng)值如下表,又知的導(dǎo)函數(shù)的圖象如下圖所示:

          0

          4

          5

          1

          2

          2

          1

          則下列關(guān)于的命題:

          ①函數(shù)的極大值點(diǎn)為2;

          ②函數(shù)上是減函數(shù);

          ③如果當(dāng)時(shí), 的最大值是2,那么的最大值為4;

          ④當(dāng),函數(shù)有4個(gè)零點(diǎn).

          其中正確命題的序號是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過點(diǎn)的圓的切線為.

          (1)求直線的極坐標(biāo)方程;

          (2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) (為實(shí)常數(shù)).

          (1)若 ,求的單調(diào)區(qū)間;

          (2)若,且,求函數(shù)上的最小值及相應(yīng)的值;

          (3)設(shè),若存在,使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

          時(shí)間

          星期一

          星期二

          星期三

          星期四

          星期五

          星期六

          星期七

          車流量(萬輛)

          1

          2

          3

          4

          5

          6

          7

          的濃度(微克/立方米)

          28

          30

          35

          41

          49

          56

          62

          (1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

          的濃度;

          (ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))

          參考公式:回歸直線的方程是,其中, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)),其中是自然對數(shù)的底數(shù).

          (1)若的兩個(gè)根分別為,且滿足,求的值;

          (2)當(dāng)時(shí),討論的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的最小值;

          (2)如果不等式 在區(qū)間上恒成立,求的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案