日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的中心在原點,焦點在軸上,長軸長為,且點在橢圓上.
          (1)求橢圓的方程;
          (2)設(shè)是橢圓長軸上的一個動點,過作方向向量的直線交橢圓、兩點,求證:為定值.

          (1);(2)證明見解析.

          解析試題分析:(1)已知橢圓的長軸長,就是已知,那么在橢圓的標準方程中還有一個參數(shù),正好橢圓過點,把這個點的代入橢圓標準方程可求出,得橢圓方程;(2)這是直線與橢圓相交問題,考查同學們的計算能力,給定了直線的方向向量,就是給出了直線的斜率,只要設(shè)動點的坐標為,就能寫出直線的方程,把它與橢圓方程聯(lián)立方程組,可求出兩點的坐標,從而求出的值,看它與有沒有關(guān)系(是不是常數(shù)),當然在求時,不一定要把兩點的坐標直接求出(如直接求出,對下面的計算沒有幫助),而是采取設(shè)而不求的思想,即設(shè),然后求出,,而再把表示出來然后代入計算,可使計算過程簡化.
          試題解析:(1) 因為的焦點在軸上且長軸為
          故可設(shè)橢圓的方程為),            (1分)
          因為點在橢圓上,所以,               (2分)
          解得,      (1分)
          所以,橢圓的方程為.                      (2分)
          (2)設(shè)),由已知,直線的方程是,   (1分)
            (*)          (2分)
          設(shè),,則、是方程(*)的兩個根,
          所以有,,                 (1分)
          所以,


          (定值).              (3分)
          所以,為定值.                     (1分)
          (寫到倒數(shù)第2行,最后1分可不扣)
          考點:(1)橢圓的標準方程;(2)直線與橢圓相交問題.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓經(jīng)過如下五個點中的三個點:,,.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)點為橢圓的左頂點,為橢圓上不同于點的兩點,若原點在的外部,且為直角三角形,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
          (1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
          (2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
          (3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經(jīng)過點
          (1)求橢圓C的標準方程;
          (2)線段是橢圓過點的弦,且,求內(nèi)切圓面積最大時實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (本小題滿分12分)已知的兩頂點坐標,圓的內(nèi)切圓,在邊,上的切點分別為(從圓外一點到圓的兩條切線段長相等),動點的軌跡為曲線.

          (1)求曲線的方程;
          (2)設(shè)直線與曲線的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
          (1)求動圓圓心的軌跡M的方程;
          (2)設(shè)過點P,且斜率為-的直線與曲線M相交于A、B兩點. 問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          定義:對于兩個雙曲線,,若的實軸是的虛軸,的虛軸是的實軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
          (1)寫出的漸近線方程(不用證明);
          (2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
          (3)求值:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知中,點A、B的坐標分別為,點C在x軸上方。
          (1)若點C坐標為,求以A、B為焦點且經(jīng)過點C的橢圓的方程;
          (2)過點P(m,0)作傾角為的直線交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓的中心在原點,焦點在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點
          (1)求橢圓的方程;
          (2)求的取值范圍;
          (3)若直線不經(jīng)過橢圓上的點,求證:直線的斜率互為相反數(shù).

          查看答案和解析>>

          同步練習冊答案