日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,∠A=60°,c= a.(13分)
          (1)求sinC的值;
          (2)若a=7,求△ABC的面積.

          【答案】
          (1)

          解:∠A=60°,c= a,

          由正弦定理可得sinC= sinA= × = ,


          (2)

          解:a=7,則c=3,

          ∴C<A,

          由(1)可得cosC= ,

          ∴sinB=sin(A+C)=sinAcosC+cosAsinC= × + × =

          ∴SABC= acsinB= ×7×3× =6


          【解析】(1.)根據(jù)正弦定理即可求出答案,
          (2.)根據(jù)同角的三角函數(shù)的關(guān)系求出cosC,再根據(jù)兩角和正弦公式求出sinB,根據(jù)面積公式計(jì)算即可.
          【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的正弦公式和正弦定理的定義的相關(guān)知識(shí)可以得到問題的答案,需要掌握兩角和與差的正弦公式:;正弦定理:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N+),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
          (Ⅰ)求{an}和{bn}的通項(xiàng)公式;
          (Ⅱ)求數(shù)列{a2nb2n1}的前n項(xiàng)和(n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正三棱柱中,AB=2,由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過棱到頂點(diǎn)C1的最短路線與棱的交點(diǎn)記為M,求:

          (Ⅰ)三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng).

          (Ⅱ)該最短路線的長(zhǎng)及的值.

          (Ⅲ)平面與平面ABC所成二面角(銳二面角)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC中,AC=3,BC=4,AB=5,A=4.

          (1)證明:

          (2)求二面角的余弦值大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如下圖所示,ABCD是邊長(zhǎng)為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

          (1)求證:AC平面BDE;

          (2)求二面角F-BE-D的余弦值

          (3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,異面直線A1B與B1C1所成的角為60°.

          (1)求該三棱柱的體積;

          (2)設(shè)D是BB1的中點(diǎn),求DC1與平面A1BC1所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角梯形PBCD中, ,APD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)ESD上,且,如下圖。

          1)求證: 平面ABCD;

          2)求二面角E—AC—D的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將菱形ABCD沿對(duì)角線BD折起,使得C點(diǎn)至C′,E點(diǎn)在線段AC′上,若二面角A﹣BD﹣E與二面角E﹣BD﹣C′的大小分別為15°和30°,則__

          查看答案和解析>>

          同步練習(xí)冊(cè)答案