日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知是拋物線上的點,的焦點, 以為直徑的圓軸的另一個交點為.
          (Ⅰ)求的方程;
          (Ⅱ)過點且斜率大于零的直線與拋物線交于兩點,為坐標(biāo)原點,的面積為,證明:直線與圓相切.
          (Ⅰ),;(Ⅱ)詳見解析.

          試題分析:(Ⅰ)利用為圓的直徑,則求得點的橫坐標(biāo),再由點在拋物線上求得曲線的方程,再 根據(jù)圓的圓心是的中點,易求圓的方程;(Ⅱ)聯(lián)立方程組,消去得到關(guān)于的一元二次方程,利用一元二次方程的根與系數(shù)關(guān)系求出 ,利用弦長公式、三角形的面積公式求出直線的方程,點到直線的距離公式求圓心的距離等于圓的半徑,證明直線與圓相切.
          試題解析:(Ⅰ) 為圓的直徑,則,即,
          代入拋物線的方程求得
          ,;       3分
          又圓的圓心是的中點,半徑,
          .       5分
          (Ⅱ) 設(shè)直線的方程為,,,
          ,則  7分
          設(shè)的面積為,則
               9分
          解得:,又,則
          ∴直線的方程為,即
          又圓心的距離,故直線與圓相切.   12分
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知點和圓

          (Ⅰ)過點的直線被圓所截得的弦長為,求直線的方程;
          (Ⅱ)試探究是否存在這樣的點是圓內(nèi)部的整點(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點稱為整點),且△OEM的面積?若存在,求出點的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓,直線 ,與圓交與兩點,點.
          (1)當(dāng)時,求的值;
          (2)當(dāng)時,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
          (1)求圓C的方程;
          (2)過點的直線與圓C交于不同的兩點且為時,求:的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          (坐標(biāo)系與參數(shù)方程選做題)設(shè)M、N分別是曲線上的動點,則M、N的最小距離是     

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          ,則直線被圓所截得的弦長為    

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若直線被圓截得的弦長為4,則的最小值是(   )
          A.B.C.3D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若直線與圓交于兩點,且兩點關(guān)于直線對稱,則實數(shù)的取值范圍為_______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          直線與圓交于不同兩點、為坐標(biāo)原點,則“”是“向量、滿足”的(  )
          A.充分不必要條件B.必要不充分條件
          C.充要條件D.既不充分也不必要條件

          查看答案和解析>>

          同步練習(xí)冊答案