(本小題滿分12分) 已知圓過兩點
,且圓心
在
上.
(1)求圓的方程;
(2)設是直線
上的動點,
是圓
的兩條切線,
為切點,求四邊形
面積的最小值.
(1) (x-1)2+(y-1)2=4. (2) S=2=2
=2
.
解析試題分析:(1)根據(jù)題意,設出圓心(a,b),然后圓過兩點
,其中垂線必定過圓心,且圓心
在
上.聯(lián)立直線的方程組得到交點坐標即為圓心坐標,進而兩點距離公式求解半徑,得到圓的方程。
(2)因為四邊形PAMB的面積S=S△PAM+S△PBM=|AM|·|PA|+
|BM|·|PB|,根據(jù)兩個三三角形的底相同,高相等,那么即可知S=2|PA|,只需要求解切線長|PA|的最小值即可。
解:(1)設圓的方程為:(x-a)2+(y-b)2=r2(r>0).
根據(jù)題意,得 ﹍﹍﹍﹍﹍﹍﹍3分
解得a=b=1,r=2, ﹍﹍﹍﹍﹍﹍﹍5分
故所求圓M的方程為(x-1)2+(y-1)2=4. ﹍﹍﹍﹍﹍﹍﹍6分
(2)因為四邊形PAMB的面積S=S△PAM+S△PBM=|AM|·|PA|+
|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|, 所以S=2|PA|, ﹍﹍﹍﹍﹍﹍﹍8分而|PA|==
, 即S=2
.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直線3x+4y+8=0上找一點P,使得|PM|的值最小,﹍﹍﹍﹍﹍﹍﹍9分
所以|PM|min==3, ﹍﹍﹍﹍﹍﹍﹍10分
所以四邊形PAMB面積的最小值為S=2=2
=2
. ﹍﹍﹍12分
考點:本試題主要是考查了圓的方程的求解以及運用切線長和圓的半徑和圓心到圓外一點的距離的勾股定理的關(guān)系可知,求解四邊形面積的最值的問題就是轉(zhuǎn)換為解三角形面積的最值的運用。
點評:結(jié)合該試題的關(guān)鍵是理解圓心和半徑是求解圓的方程核心,同時直線與圓相切時,構(gòu)成的四邊形的面積問題,能否轉(zhuǎn)化為一條切線和一個半徑以及一個圓心到圓外一點P的三角形的面積的最值,最終化簡為只需要求解切線長|PA|的最小值即可。。
科目:高中數(shù)學 來源: 題型:解答題
(理)(本題滿分14分)如圖,已知直線,直線
以及
上一點
.
(Ⅰ)求圓心M在上且與直線
相切于點
的圓⊙M的方程.
(Ⅱ)在(Ⅰ)的條件下;若直線分別與直線
、圓⊙依次相交于A、B、C三點,
求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點M到點A(2,0)的距離是它到點B(8,0)的距離的一半,
求:(1)動點M的軌跡方程;
(2)若N為線段AM的中點,試求點N的軌跡.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)已知橢圓上的動點到焦點距離的最小值為
。以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點, 且滿足
(
為坐標原點)。當
時,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)如圖,A點在x軸上方,外接圓半徑
,弦
在
軸上且
軸垂直平分
邊,
(1)求外接圓的標準方程
(2)求過點且以
為焦點的橢圓方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com