【題目】已知橢圓和拋物線
有公共焦點(diǎn)
,
的中心和
的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)
的直線
與拋物線
分別相交于
兩點(diǎn)(其中點(diǎn)
在第四象限內(nèi)).
(1)若,求直線
的方程;
(2)若坐標(biāo)原點(diǎn)關(guān)于直線
的對稱點(diǎn)
在拋物線
上,直線
與橢圓
有公共點(diǎn),求橢圓
的長軸長的最小值.
【答案】(1)(2)
【解析】試題分析:
(1)利用題意設(shè)直線的方程為
.設(shè)出點(diǎn)的坐標(biāo)可求得
.則直線
的方程為
.
(2)由題意可得直線的斜率存在,設(shè)出直線方程,由對稱性聯(lián)立直線與拋物線的方程可得橢圓的長軸長的最小值為
試題解析:
解:(1)解法一:由題意得拋物線方程為.
設(shè)直線的方程為
.
令,
,其中
. 由
,得
.
聯(lián)立,可得
,
,解得
,
,
.
直線
的方程為
.
(2)設(shè),直線
,
點(diǎn)
在拋物線
上,
直線
的斜率存在,
關(guān)于直線
對稱,所以
.解得
.
故代入拋物線
,可得
,
.
直線的方程為
或
.
設(shè)橢圓為. 聯(lián)立直線和橢圓,消去
整理得
,解得
.
則,即
.
橢圓
的長軸長的最小值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(
是大于
的常數(shù))的左、右頂點(diǎn)分別為
、
,點(diǎn)
是橢圓上位于
軸上方的動(dòng)點(diǎn),直線
、
與直線
分別交于
、
兩點(diǎn)(設(shè)直線
的斜率為正數(shù)).
(Ⅰ)設(shè)直線、
的斜率分別為
,
,求證
為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點(diǎn)
,使得
是等邊三角形”的什么條件?(直接寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制各等級劃分標(biāo)準(zhǔn)見下表,規(guī)定:
、
、
三級為合格等級,
為不合格等級.
百分制 |
|
|
|
|
等級 |
為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì),按照
的分組作出頻率分布直方圖如圖
所示,樣本中分?jǐn)?shù)在
分及以上的所有數(shù)據(jù)的莖葉圖如圖
所示.
(1)求和頻率分布直方圖中的
的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生任選人,求至少有
人成績是合格等級的概率;
(3)在選取的樣本中,從、
兩個(gè)等級的學(xué)生中隨機(jī)抽取了
名學(xué)生進(jìn)行調(diào)研,記
表示所抽取的
名學(xué)生中為
等級的學(xué)生人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+ )(x∈R),有下列命題:
①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點(diǎn) 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動(dòng)圓與直線
相切且與圓
外切.
(1)求動(dòng)圓圓心的軌跡
的方程;
(2)若經(jīng)過定點(diǎn)的直線
與曲線
交于
兩點(diǎn),
是線段
的中點(diǎn),過
作
軸的平行線與曲線
相交于點(diǎn)
,試問是否存在直線
,使得
,若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差不為零,a1=25,且a1 , a11 , a13成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n﹣2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式.
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com