日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的左、右焦點分別為,上頂點為,在軸負半軸上有一點,滿足,且.

          (Ⅰ)求橢圓的離心率;

          (Ⅱ)D是過三點的圓上的點,D到直線的最大距離等于橢圓長軸的長,求橢圓的方程;

          (Ⅲ)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由.

           

          【答案】

          (1)橢圓的離心率     (2)橢圓方程為.  (3)的取值范圍是

          【解析】I)由于可以根據(jù),把B點坐標用b,c表示出來,然后利用建立關(guān)于a,b,c的方程,即可確定e的值.

          (II)先求出過三點A、B、F2的圓的方程,然后根據(jù)圓到直線上的最大距離應(yīng)為圓心到直線的距離加上半徑.再結(jié)合離心率即可確定橢圓C的方程.

          (III)解題的關(guān)鍵是菱形條件就是然后坐標化再由直線方程與橢圓方程聯(lián)立,利用韋達定理差別式這個通式通法,解決問題.

          解:(Ⅰ)設(shè)B(x0,0),由(c,0),A(0,b), ,由于 即中點.故,故橢圓的離心率   --4分

          (Ⅱ)由(1)知于是,0), B,

          △ABF的外接圓圓心為(,0),半徑r=|FB|=,D到直線的最大距離等于,所以圓心到直線的距離為,所以,解得=2,∴c =1,b=,  所求橢圓方程為.    ------------------8分

          (Ⅲ)由(2)知,

                     代入得  

          設(shè),,  ------9分

          由于菱形對角線垂直,則

              -------------10分

          由已知條件知     

          故存在滿足題意的點P且的取值范圍是

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知中心在坐標原點、焦點在x軸上橢圓的離心率e=
          3
          3
          ,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
          (1)求該橢圓的標準方程;
          (2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (08年四川卷理)設(shè)橢圓的左、右焦點分別是、,離心率,右準線上的兩動點、,且

          (Ⅰ)若,求、的值;

          (Ⅱ)當最小時,求證共線.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分12分) 已知橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點分別是F1和F2,直線且與x軸垂直,動直線軸垂直,于點P,求線段PF1的垂直平分線與的交點M的軌跡方程,并指明曲線類型。

          查看答案和解析>>

          科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

          設(shè)橢圓的左、右焦點分別是F1、F2,離心率,右準線l上的兩動點M、N,且,
          (Ⅰ)若,求a、b的值;
          (Ⅱ)當最小時,求證共線。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市休寧中學高三(上)數(shù)學綜合練習試卷1(文科)(解析版) 題型:解答題

          已知中心在坐標原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
          (1)求該橢圓的標準方程;
          (2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

          查看答案和解析>>

          同步練習冊答案