【題目】已知命題:關(guān)于
的不等式
無(wú)解;命題
:指數(shù)函數(shù)
是
上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)
的取值范圍;
(2)若滿足為假命題且
為真命題的實(shí)數(shù)
取值范圍是集合
,集合
,且
,求實(shí)數(shù)
的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,過(guò)原點(diǎn)
且斜率為1的直線
交橢圓
于
兩點(diǎn),四邊形
的周長(zhǎng)與面積分別為8與
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線交橢圓
于
兩點(diǎn),且
,求證:
到直線
的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在口中,
,沿
將
翻折到
的位置,使平面
平面
.
(1)求證: 平面
;
(2)若在線段上有一點(diǎn)
滿足
,且二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線
平面
,E,F分別是
,
的中點(diǎn).
(1)記平面與平面
的交線為l,試判斷直線l與平面
的位置關(guān)系,并加以證明;
(2)設(shè),求二面角
大小的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,錯(cuò)誤的是( )
A. 若命題,
,則命題
,
B. “”是“
”的必要不充分條件
C. “若,則
、
中至少有一個(gè)不小于
”的逆否命題是真命題
D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和
:
,過(guò)拋物線上的一點(diǎn)
,作
的兩條切線,與
軸分別相交于
,
兩點(diǎn).
(Ⅰ)若切線過(guò)拋物線的焦點(diǎn),求直線
斜率;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實(shí)根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若“p或q”是真命題,“p且q”是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)的圖象恰好通過(guò)
個(gè)整點(diǎn),則稱函數(shù)
為
階整點(diǎn)函數(shù).有下列函數(shù):
①; ②
③
④
,
其中是一階整點(diǎn)函數(shù)的是( )
A. ①②③④ B. ①③④ C. ①④ D. ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求
的取值范圍;
(2)若且關(guān)于
的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com