日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命題:
          ①F(x)=f(x)﹣g(x)在 內(nèi)單調(diào)遞增;
          ②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;
          ③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];
          ④f(x)和h(x)之間存在唯一的“隔離直線”y=2 x﹣e.
          其中真命題的個數(shù)為(請?zhí)钏姓_命題的序號)

          【答案】①②④
          【解析】解:①∵F(x)=f(x)﹣g(x)=x2 ,∴x∈(﹣ ,0),F(xiàn)′(x)=2x+ >0,∴F(x)=f(x)﹣g(x)在x∈(﹣ ,0)內(nèi)單調(diào)遞增,故①對;
          ②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數(shù)x成立,即有△1≤0,k2+4b≤0,
          ≤kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,
          即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k﹣4≤k≤0,同理﹣4≤b≤0,故②對,③錯;
          ④函數(shù)f(x)和h(x)的圖象在x= 處有公共點,因此存在f(x)和g(x)的隔離直線,
          那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x﹣ ),即y=kx﹣k +e,
          由f(x)≥kx﹣k +e(x∈R),可得x2﹣kx+k ﹣e≥0當(dāng)x∈R恒成立,
          則△≤0,只有k=2 ,此時直線方程為:y=2 x﹣e,
          下面證明h(x)≤2 x﹣e,令G(x)=2 x﹣e﹣h(x)=2 x﹣e﹣2elnx,
          G′(x)= ,
          當(dāng)x= 時,G′(x)=0,當(dāng)0<x< 時,G′(x)<0,當(dāng)x> 時,G′(x)>0,
          則當(dāng)x= 時,G(x)取到極小值,極小值是0,也是最小值.
          所以G(x)=2 x﹣e﹣g(x)≥0,則g(x)≤2 x﹣e當(dāng)x>0時恒成立.
          ∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2 x﹣e,故④正確.
          所以答案是:①②④.
          【考點精析】本題主要考查了命題的真假斷與應(yīng)用的相關(guān)知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          ,求函數(shù)的單調(diào)區(qū)間;

          若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}是各項均為正數(shù)的等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項和為Sn , 滿足2Sn+bn=1
          (1)求數(shù)列{an}、{bn}的通項公式;
          (2)如果cn=anbn , 設(shè)數(shù)列{cn}的前n項和為Tn , 求證:Tn<Sn+

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=(
          A.?
          B.{x| <x≤1}
          C.{x|x<1}
          D.{x|0<x<1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值為A,若存在實數(shù)x1 , x2 , 使得對任意實數(shù)x總有f(x1)≤f(x)≤f(x2)成立,則A|x1﹣x2|的最小值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
          (I)求證:直線DE⊥平面PAC.
          (Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx+
          (1)若函數(shù)有兩個極值點,求實數(shù)a的取值范圍;
          (2)對所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若對于,恒成立,求實數(shù)的取值范圍;

          (2)若對于恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)ax2bxc的圖象與x軸有兩個不同的交點,若f(c)00<x<c時,f(x)>0,

          (1)證明:f(x)0的一個根;

          (2)試比較c的大;

          (3)證明:-2<b<1.

          查看答案和解析>>

          同步練習(xí)冊答案